Skip to main content
Log in

Erythrocytäre Enzympolymorphismen in der forensischen Serologie

  • Übersichtsreferat — Review Article
  • Published:
Zeitschrift für Rechtsmedizin Aims and scope Submit manuscript

Summary

It is reported on the use of five red cell enzyme polymorphisms in forensic serology.

Acid Photophatase. Some electrophoretic methods are given, classifiable roughly into three categories of isozyme patterns. Available physico-chemical properties are reported. Recent data suggest that the two isozymes, produced by one allele are conformational isomers. Gene frequencies in european populations show certain north-to-south differences that sould be accomodated on, if the probability of the paternity has to be calculated. From the present literature 4151 mother/child pairs are summarized without exception of the postulated gene model. The constellation of exclusion “child-homozygous, accused man—oppositely homozygous”, should be reinvestigated by quantitative gene dosage measurements to exclude the existence of the P0 allele.

Discrepant data are available on the literature about the use in identification cases of bloodstains and bloodsamples. These problems need further clarification by more sensitive procedures.

Phosphoglucomutase. Electrophoretic methods and physicochemical properties are reported. Gene frequencies in several populations are given. Certain north-to-south differences between european populations should be taken into account. 4966 mother/child pairs have been summarized from the literature without genetic incompatibility. The existence of the PGM 01 allele should be considered too when an opinion is given on exclusion cases with opposite homozygosis. There is a good chance in bloodstain and blood sample identification cases to determine this enzyme after considerable time of storage.

6-Phosphogluconate-dehydrogenase. A designation with letters only is used for the different genes and Phenotypes. Methods for the electrophoretic separation and enzyme's physicochemical properties are given. Differences of gene frequencies between northern and southern european populations have to be considered in paternity proceedings. 933 mother/child pairs have been reported in the literature without any irregularities. As exclusion cases will occur mostly, when the child is heterozygous (AB) and the accused man homozygous (A), there is a high degree of reliability, when one has to give an opinion on this constellation. The identification in stored bloodstains is possible up to 4 weeks.

Adenosine Deaminase. Methods of determination and the physico-chemical properties are described. It is pointed out to the rather quick changes of patterns that occur on storage. For gene frequencies in european populations there seems to be present a north-to-south trend. 1600 mother/child pairs have been published without exception of the mendelian rules. According to the PGD-system the normal exclusion cases should be judged to be reliable. The determination of this enzyme in bloodstains is possible after considerable time of storage.

Adenylate Kinase. Some methods of determination and the properties of the enzyme are reported. Gene frequencies in most european populations are rather homogeneous. 1510 mother/child pairs are available on the literature. Normal exclusion cases (heterozygous child, homozygous man) should be judged to be reliable. Identification in stored blood samples and in stains is possible after long time storage.

Some other red cell enzyme polymorphisms are shortly reported too.

Zusammenfassung

Es wird berichtet über die erythrocytären Enzympolymorphismen: saure Erythrocytenphosphatase, Phosphoglucomutase, 6-Phosphogluconat-Dehydrogenase, Adenosindeaminase, Adenylatkinase. Die beobachteten Phä notypen einschließlich der seltenen Varianten werden beschrieben. Eine Beschreibung der physikochemischen Eigenschaften folgt. Die meisten der bisher mitgeteilten Genfrequenzen werden tabellarisch dargestellt. Eine tabellarisch zusammengefaßte Aufstellung der bisher publizierten Familiendaten erfolgt für jedes Enzym. Die Anwendbarkeit und der Sicherheitsgrad bei der Abstammungsbegutachtung werden diskutiert. Über die publizierten Nachweisgrenzen aus gelagerten Blutspuren und Blutproben wird ebenfalls berichtet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Giblett, E. R.: Genetic markers in human blood, 1st ed. Oxford-Edinburgh: Blackwell Scientific Publications 1969.

    Google Scholar 

  2. Harris, H.: The principles of human biochemical genetics, 1st ed. Amsterdam-London: North-Holland Publishing Co. 1971.

    Google Scholar 

  3. Yunis, J. J.: Biochemical methods in red cell genetics, 1st ed. New York-London: Academic Press 1969.

    Google Scholar 

  4. Tsuboi, K. K., Hudson, P. B.: Acid phosphatase. I. Human red cell phosphomonoesterase; general properties. Arch. Biochem.43, 339 (1953).

    Google Scholar 

  5. — —: Acid phophatase. II. Purification of human red cell phosphomonoesterase. Arch. Biochem.53, 341 (1954).

    Google Scholar 

  6. — —: Acid phophatase. VI. Kinetic properties of purified yeast and red cell phosphomonoesterase. Arch. Biochem.61, 197 (1956).

    Google Scholar 

  7. Abul, M. A. M., King, E. J.: Properties of the acid phosphatase of erythrocytes and of the human prostate gland. Bioohem. J.45, 51 (1949).

    Google Scholar 

  8. Hopkinson, D. A., Spencer, N., Harris, H.: Red cell acid phosphatase variants: A new human polymorphism. Nature (Lond.)199, 969–971 (1963).

    Google Scholar 

  9. Giblett, E. R., Scott, N. M.: Red cell acid phosphatase: Racial distribution and report of a new phenotype. Amer. J. hum. Genet.17, 425–432 (1965).

    Google Scholar 

  10. Karp, G. W., Sutton, H. E.: Some new phenotypes of human red cell acid phosphatase. Amer. J. hum Genet.19, 54–62 (1967).

    Google Scholar 

  11. Herbich, J., Fisher, R. A., Hopkinson, D. A.: Atypical segregation of human red cell acid phosphatase phenotypes: Evidence for a rare ‘silent’ allele P0. Ann. hum. Genet.34, 145–150 (1970).

    Google Scholar 

  12. —: Nachweis eines Gens P0 im sauren Erythrocyten-Phosphatase-System. Ärztl. Lab.15, 381–391 (1969).

    Google Scholar 

  13. Lai, L., Nevo, S., Steinberg, A. G.: Acid phosphatases of human red cells: Predicted phenotype conforms to a genetic hypothesis. Science145, 1187–1188 (1964).

    Google Scholar 

  14. Radam, G., Strauch, H.: Elektrophoretische Darstellung der sauren Erythrocytenphosphatase. Z. klin. Chem.4, 234–235 (1966).

    Google Scholar 

  15. Hennig, W., Hoppe, H. H., Kaifie, S.: Die elektrophoretische Bestimmung der sauren Erythrocytenphosphatasegruppen mit Polyacrylamid-Gel. Ärztl. Lab.14, 273–278 (1968).

    Google Scholar 

  16. Terfloth, H. P.: Modifizierte Technik zur elektrophoretischen Auftrennung der sauren Erythrocytenphosphatase. Beitr. gerichtl. Med.24, 186–190 (1969).

    Google Scholar 

  17. Richter, O.: Untersuchungen zur Typendifferenzierung der sauren Erythrocytenphosphatase. Z. Immun.-Forsch.134, 287–292 (1967).

    Google Scholar 

  18. Reimann, W., Heidel, G.: Zur Methode der Bestimmung der sauren Phosphatase der Erythrocyten. Z. ärztl. Fortbild.61, 1164–1167 (1967).

    Google Scholar 

  19. Klose, I.: Technik, Anwendung und Beweiswert der sauren Erythrocytenphosphatase in der Gutachtenpraxis. Beitr. gerichtl. Med.25, 213–215 (1969).

    Google Scholar 

  20. Speiser, P., Pausch, V.: Die saure Erythrocytenphosphatase des Menschen. Wien. klin. Wschr.80, 5–15 (1968).

    Google Scholar 

  21. Gussmann, S.: Beitrag zur Differentialdiagnose des Typs C der sauren Phosphatase der Erythrocyten des Menschen (EC 3.1.3.2). Z. Rechtsmedizin67, 227–229 (1970).

    Google Scholar 

  22. Tiesler, E.: Vertikale Säulenelektrophorese zur Trennung der sauren Erythrocytenphosphatasen (SEP) E 3.1.3.2. Ärztl. Lab.15, 328–333 (1969).

    Google Scholar 

  23. Georgatsos, J. G.: Acid phosphatases of human erythrocytes. Arch. Biochem.110, 354–356 (1965).

    Google Scholar 

  24. Brinkmann, B., Reich, K.: Saure Erythrocytenphosphatase. Ärztl. Lab.13, 346–351 (1967).

    Google Scholar 

  25. Fiedler, H., Niebuhr, R.: Die Untersuchung zweier erythrocytärer Enzym-Polymorphismen in einem Arbeitsgang. Blut16, 161–163 (1967).

    Google Scholar 

  26. Hopkinson, D. A., Spencer, N., Harris, H.: Genetical studies on human red cell acid phosphatase. Amer. J. hum. Genet.16, 141–154 (1964).

    Google Scholar 

  27. Valentine, W. N., Tanaka, K. R., Fredericks, R. E.: Erythrocyte acid phosphatase in health and disease. Amer. J. clin. Path.36, 328 (1961).

    Google Scholar 

  28. Rapoport, S. M.: Medizinische Biochemie, 4. Aufl. Berlin: VEB Verlag und Volk 1966.

    Google Scholar 

  29. Fisher, R. A., Harris, H.: Studies on the purification and properties of the genetic variants of red cell acid phosphohydrolase in man. Ann. N. Y. Sci.166, 380–391 (1969).

    Google Scholar 

  30. Luffman, J. E., Harris, H.: A comparison of some properties of human red cell acid phosphatase in different phenotypes. Ann. hum. Genet.30, 387–401 (1967).

    Google Scholar 

  31. Fisher, R. A., Harris, H.: Further studies on the molecular size of red cell acid phosphatase. Ann. hum. Genet.34, 449–453 (1971).

    Google Scholar 

  32. — —: Studies on the separate isozymes of red cell acid phosphatase phenotypes A and B. II. Comparison of kinetics and stabilities of the isozymes. Ann. hum. Genet.34, 439–448 (1971).

    Google Scholar 

  33. Spencer, N., Hopkinson, D. A., Harris, H.: Quantitative differences and gene dosage in the human red cell acid phosphatase polymorphism. Nature (Lond.)201, 299–300 (1964).

    Google Scholar 

  34. Goedde, H. W., Ritter, H., Callsen, U., Flock, H.: Untersuchungen zum Polymorphismus der sauren Erythrocytenphosphatasen (EC 3.1.3.2). Hum. Genet.3, 113–120 (1966).

    Google Scholar 

  35. Modiano, B., Filippi, G., Brunelli, F., Frattaroli, W., Siniscalco, M.: Studies on red cell acid phosphatase in Sardinia and Rome. Absence of correlation with past malarial morbidity. Acta genet. (Basel)17, 17–28 (1967).

    Google Scholar 

  36. Shinoda, T.: Studies on genetically different acid phosphatase of human red cells. J. Biochem. (Tokyo)64, 733–741 (1968).

    Google Scholar 

  37. Krauland, W., Smerling, M.: Isolierte Schädigung der A-Fraktion der sauren Erythrocytenphosphatase durch äußere Einflüsse (Liquoid). Ärztl. Lab.17, 129–131 (1971).

    Google Scholar 

  38. Scott, E. M.: Kinetic comparison of genetically different acid phosphatases of human erythrocytes. J. biol. Chem.241, 3049–3052 (1966).

    Google Scholar 

  39. Radam, G., Strauch, H.: Schnellwandernde Zonen der sauren Erythrocytenphosphatase und ihre Beziehungen zu den Phänotypen. Dtsch. Z. ges. gerichtl. Med.60, 39–41 (1967).

    Google Scholar 

  40. Bottini, E., Modiano, G.: Effect of oxidized glutathione on human red cell acid phosphatase. Biochem. biophys. Res. Commun.17, 260–264 (1964).

    Google Scholar 

  41. — —: On the effect of oxidized Glutathione and acetylphenylhydrazine on red cell acid phosphatase. Blood27, 281–282 (1966).

    Google Scholar 

  42. Hopkinson, D. A.: The investigation of reactive sulphydryls in enzymes and their variants by starch gel electrophoresis: Studies on the PHI 5-1. Ann. hum. Genet.34, 79–84 (1970).

    Google Scholar 

  43. Bottini, E., Modiano, G., Businco, L., Filippi, G.: Differential effect of oxidized glutathione or acetylphenylhydrazine on individual electrophoretic components of red cell acid phosphatases. Experientia (Basel)28, 107–109 (1967).

    Google Scholar 

  44. Löhr, G. W.: Die Fermente des Erythrocyten und ihre funktionelle Bedeutung. Folia haemat. (Frankfurt)9, 240–258 (1964).

    Google Scholar 

  45. Lamm, L. U.: Red cell phosphoglucomutase and acid phosphatase types among Danish blood donors. Acta genet. (Basel)18, 386–393 (1968).

    Google Scholar 

  46. Hopkinson, D. A.: Genetical and biochemical studies on human red cell acid phosphatase in health and disease. M. D. Thesis, Cambridge University (1966).

  47. Brinkmann, B., Hoppe, H. H., Hennig, W., Koops, E.: Red cell enzyme polymorphisms in a northern german population. Hum. Hered. (im Druck).

  48. Radam, G., Strauch, H.: Populationsgenetik der sauren Erythrocytenphosphatase. Hum. Genet.2, 378–380 (1966).

    Google Scholar 

  49. Adamek, H., Orth, G.-W., Kneiphoff, H., Nagel, V.: Die Isoenzympolymorphismen. Saure Erythrocytenphosphatase, Phosphoglucomutase, Adenylatkinase und Adenosindesaminase. Ärztl. Lab.17, 132–139 (1971).

    Google Scholar 

  50. Pulverer, G., Hummel, K., Weidtman, V.: Verteilung der Typen der sauren Erythrocytenphosphatase in der deutschen Bevölkerung. Z. Immun.-Forsch.138, 475–479 (1969).

    Google Scholar 

  51. Pflugshaupt, R., Scherz, R., Trautwein, M., Richiger, U., Bütler, R.: Polymorphism of the red cell acid phosphatase in the Swiss population. Hum. Genet.8, 354–356 (1970).

    Google Scholar 

  52. Van Cong, N., Moullec, J.: Les types de phosphatase acide des globules rouges. Etude de 134 Familles. Rev. franç. Étud. clin. biol.12, 574–576 (1967).

    Google Scholar 

  53. Herzog, P., Bohatova, J.: Zur Populationsgenetik der sauren Phosphatase der Erythrocyten (EC: 3.1.3.1): Phänotypen- und Allelhäufigkeiten in der CSSR. Hum. Genet.7, 183–184 (1969).

    Google Scholar 

  54. Hummel, K., Pulverer, G., Schaal, K. P., Weidtman, V.: Häufigkeit der Sichttypen in den Erbsystemen Hp, Gc, SEP, PGM und AK sowie den Erbeigenschaften Gm(1), Gm(2) und Inv(1) bei Deutschen (Freiburg/Br., Köln) und bei Türken. Hum. Genet.8, 330–333 (1970).

    Google Scholar 

  55. Shinoda, T.: Red cell acid phosphatase types in a Japanese population. Jap. J. hum. Genet.11, 252–256 (1967).

    Google Scholar 

  56. Lai, L. Y. C., Kwa, S. B.: Red cell acid phosphatase types in some populations of South-East Asia. Acta genet. (Basel)18, 45–54 (1968).

    Google Scholar 

  57. Shih, L.-Y., Hsia, D. Y.-Y.: The distribution of genetic polymorphisms among Chinese in Taiwan. Hum. Hered.19, 227–233 (1969).

    Google Scholar 

  58. Bajatzadeh, M., Neumann, S., Walter, H.: Pseudocholinesterases and human red cell acid phosphatases in Koreans. Hum. Genet.7, 91 (1969).

    Google Scholar 

  59. Walter, H., Bajatzadeh, M.: Studies on the distribution of the human red cell acid phosphatase polymorphism in Iranians and other populations. Acta genet. (Basel)18, 421–428 (1968).

    Google Scholar 

  60. Scott, E. M., Duncan, J. W., Ekstrand, V., Wright, R. C.: Frequency of polymorphic types of red cell enzymes and serum factors in Alaskan Eskimos and Indians. Amer. J. hum. Genet.18, 408–411 (1966).

    Google Scholar 

  61. Lai, L. Y. C.: Hereditary red cell acid phosphatase types in Australian white and New Guinea native populations. Acta genet. (Basel)16, 313–320 (1966).

    Google Scholar 

  62. —: Unusual distribution of red cell acid phosphatase among aborigines of Australia. Nature (Lond.)217, 1186 (1968).

    Google Scholar 

  63. Tashian, R. E., Brewer, G. J., Lehmann, H., Davies, D. A., Rucknagel, D. L.: Further studies on the Xavante Indians. V. Genetic variability in some serum and erythrocyte enzymes, hemoglobin and the urinary excretion of β-Aminoisobutyric acid. Amer. J. hum. Genet.19, 524–531 (1967).

    Google Scholar 

  64. Krüger, J., Fuhrmann, W., Lichte, K.-H., Steffens, C.: Zur Verwendung des Polymorphismus der sauren Erythrocytenphosphatase bei der Vaterschaftsbegutachtung. Dtsch. Z. ges. gerichtl. Med.64, 127–146 (1968).

    Google Scholar 

  65. Jarosch, K.: Die Phänotypenfrequenz der sauren Erythrozytenphosphatasen und die Bedeutung im Vaterschaftsprozeß. Wien. med. Wschr.118, 329 (1968).

    Google Scholar 

  66. Fiedler, H.: Das Isoenzymsystem der sauren Erythrocytenphosphatasen und seine Verwendung in der forensischen Vaterschaftsbegutachtung. Ärztl. Lab.13, 507–511 (1967).

    Google Scholar 

  67. Fuhrmann, W., Lichte, K.-H.: Human red cell acid phosphatase polymorphism. A study on gene frequency and forensic use of the system in cases of disputed paternity. Hum. Genet.3, 121–126 (1966).

    Google Scholar 

  68. Goedde, H. W., Benkmann, H.-G., Christ, I., Singh, S., Hirth, L.: Gene frequencies of red cell adenosine deaminase, adenylate kinase, phosphoglucomutase, acid phosphatase and Serum α-antitrypsin (Pi) in a German population. Hum. Genet.10, 235–243 (1970).

    Google Scholar 

  69. Reimann, W., Willner, G.: Identifizierung gelagerter Alkoholblutproben durch Bestimmung der Typen der sauren Erythrocytenphosphatase (sEPh). Dtsch. Z. ges. gerichtl. Med.64, 33–38 (1968).

    Google Scholar 

  70. Wille, B., Bender, K., Wolf, U., Ritter, H.: Zur Populationsgenetik der sauren Phosphatase der Erythrocyten (EC: 3.1.3.2): Phänotypen- und Allelhäufigkeiten in Südwestdeutschland. Hum. Genet.5, 274–277 (1968).

    Google Scholar 

  71. Dürwald, W., Hunger, H.: Populationsgenetische und formalgenetische Untersuchungen zum Polymorphismus der sauren Erythrozytenphosphatase. Dtsch. Gesundh.-Wes.22, 2368–2370 (1967).

    Google Scholar 

  72. Brinkmann, B., Koops, E., Hoppe, H. H.: Disagreements between observed and expected data in erythrocyte acid phosphatase polymorphism. (In Vorbereitung.)

  73. Hopkinson, D. A., Harris, H.: Red cell acid phosphatase, phosphoglucomutase, and adenylate kinase, chapt. 13 in: Biochemical methods in red cell genetics, 1st ed. New York-London: Academic Press 1969.

    Google Scholar 

  74. Prokop, O.: Zum Beweiswert der sauren Erythrocyten-Phosphatase. Dtsch. Z. ges. gerichtl. Med.61, 59–61 (1967).

    Google Scholar 

  75. Wichmann, D.: Die Typen der sauren Erythrozytenphosphatase in der Vaterschaftsbegutachtung: Ausschlußerwartung, Sicherheitsgrad und Mutmaßlichkeitswerte der Vaterschaft. Anthrop. Anz.31, 46–50 (1968).

    Google Scholar 

  76. Hummel, K., Schmidt, V., Ihm, P.: Weitere Ergänzungen der lg Y/X-Tabellen zur Berechnung der Vaterschaftswahrscheinlichkeit aus serologischen Befunden. Z. Immun.-Forsch.137, 320–332 (1969).

    Google Scholar 

  77. Richter, O.: Systematische Altersuntersuchungen der sauren Erythrocytenphosphatase. Arb. Gem. Blutgruppensachverst., 6. Tagg, 5./6. 4. 1968 in Mainz.

  78. Rose, D.: SEP-Bestimmung an älteren Blutproben. Vorwiegend verbesserter Nachweis der Phänotypen BC und AC. Ärztl. Lab.17, 140–143 (1971).

    Google Scholar 

  79. Smerling, M.: Bestimmung der sauren Erythrocytenphosphatase an alten Blutalkoholproben und in Blutspuren. Arch. Kriminol.144, 161–166 (1968).

    Google Scholar 

  80. Heidel, G.: Die spurenkundliche Bedeutung der Typen der sauren Erythrocytenphosphatase. Dtsch. Z. ges. gerichtl. Med.63, 37–43 (1968).

    Google Scholar 

  81. Koops, E.: Saure Erythrocytenphosphatase: Populationsgenetik und vergleichende Untersuchungen zum Nachweis an gelagerten Blutproben. Diss. Universität Hamburg (1970).

  82. Heidel, G., Reimann, W.: Bestimmung der sauren Phosphatase der Erythrocyten im Leichenblut. Dtsch. Z. ges. gerichtl. Med.62, 207–211 (1968).

    Google Scholar 

  83. Nagata, T., Dotzauer, G.: Nachweis und Typenbestimmbarkeit der sauren Erythrocytenphosphatase in Blutspuren. Z. Rechtsmedizin67, 359–363 (1970).

    Google Scholar 

  84. Lisker, R., Giblett, E. R.: Studies on several genetic hematological traits of mexicans. XI. Red cell acid phosphatase and phosphoglucomutase in three Indian groups. Amer. J. hum. Genet.19, 174–177 (1967).

    Google Scholar 

  85. Reimann, W., Rönisch, P.: Die Bestimmbarkeit der Typen der sauren Erythrozytenphosphatase beim Neugeborenen. Z. Immun.-Forsch,136, 383–389 (1968).

    Google Scholar 

  86. Najjar, V. A., Pullmann, M. E.: The occurrence of a group transfer involving enzyme (phophoglucomutase) and substrate. Science119, 631–634 (1954).

    Google Scholar 

  87. Spencer, N., Hopkinson, D. A., Harris, H.: Phosphoglucomutase polymorphism in man. Nature (Lond.)204, 742–745 (1964).

    Google Scholar 

  88. Hopkinson, D. A., Harris, H.: Evidence for a second “structural” locus determining human phosphoglucomutase. Nature (Lond.)208, 410–412 (1965).

    Google Scholar 

  89. — —: A third phosphoglucomutase locus in man. Ann. hum. Genet.31, 359 (1968).

    Google Scholar 

  90. — —: Rare phosphoglucomutase phenotypes. Ann. hum. Genet.30, 167–181 (1966).

    Google Scholar 

  91. Harris, H.: Enzyme polymorphisms in man. Proc. roy. Soc. B164 298–310 (1966).

    Google Scholar 

  92. Monn, E.: Application of the phosphoglucomutase (PGM) system of human red cells in paternity cases. Vox Sang. (Basel)16, 211–221 (1969).

    Google Scholar 

  93. Hopkinson, D. A.: Genetically determined polymorphisms of erythrocyte enzymes in man. Clin. Chem.11, 21–79 (1968).

    Google Scholar 

  94. Parrington, J. M., Cruickshank, G., Hopkinson, D. A., Robson, E. B., Harris, H.: Linkage relationship between the three phosphoglucomutase loci PGM1, PGM2, and PGM3. Ann. hum. Genet.32, 27–34 (1968).

    Google Scholar 

  95. Terrenato, L., Santolamazza, C., Scozzari, R., Gigliani, F., Modiano, G.: Red cell phosphoglucomutase polymorphism. II. Densitometric studies. Hum. Hered.20, 94–103 (1970).

    Google Scholar 

  96. Modiano, G., Scozzari, R., Gigliani, F., Santolamazza, C., Afeltra, P., Frattaroli, W.: Red cell phosphoglucomutase polymorphism. I. Enzyme activity of different red cell PGM phenotypes. Hum. Hered.20, 86–93 (1970).

    Google Scholar 

  97. Fiedler, H., Pettenkofer, H.: Ein “neuer” Phänotyp im Isoenzymsystem der Phosphoglucomutasen des Menschen (PGM1O). 1. Mitt. Blut18, 33–34 (1968).

    Google Scholar 

  98. — —: Ein „neuer“ Phänotyp im Isoenzymsystem der Phosphoglucomutasen des Menschen (PGM1O). 2. Mitt. Blut18, 358–362 (1969).

    Google Scholar 

  99. Brinkmann, B., Koops, E., Klopp, O., Heindl, K., Rüdiger, H. W.: Inherited partial deficiency of the PGM 11 gene, biochemical and densitometric studies. Ann. hum. Genet. (im Druck).

  100. Wendt, G. G., Kirchberg, G., Rube, M.: Problematischer Mutter-Kind-Ausschluß mit PGM1. Hum, Genet.11, 171–174 (1971).

    Google Scholar 

  101. Benerecetti, S. A. S., Modiano, G.: Studies on african pygmies. II. Red cell phospho-glucomutase studies in babinga pygmies: A common PGM2 variant allele. Amer. J. hum. Genet.21, 315–321 (1969).

    Google Scholar 

  102. Lie-Injo, L. E.: Phosphoglucomutase polymorphism: an unusual type in negroes. Nature (Lond.)210, 1183–1184 (1966).

    Google Scholar 

  103. Gordon, H., Kersaan, M. M., Woodburne, V., Sophangisa, E.: Further studies of genetical variation in human red-cell enzymes. S. Afr. med. J. 1242–1243 (1968).

  104. Monn, E.: A new red cell phosphoglucomutase phenotype in man. Acta genet. (Basel)18, 123–127 (1968).

    Google Scholar 

  105. Gordon, H., Vooijs, M., Keraan, M. M.: Genetical variation in some human red cell enzymes: an interracial study. S. Afr. med. J.40, 1031 (1966).

    Google Scholar 

  106. Smerling, M.: Persönliche Mitteilung.

  107. McAlpine, P. J., Hopkinson, D. A., Harris, H.: The relative activities attributable to the three phosphoglucomutase loci (PGM1, PGM2, PGM3) in human tissues. Ann. hum. Genet.34, 169–173 (1970).

    Google Scholar 

  108. Murray, R. F.: Persönliche Mitteilung. zit. nach Hopkinson [93].

  109. Detter, J.: Persönliche Mitteilung; zit. nach Giblett [1].

  110. Renninger, W., Sina, D.: Isoenzymmuster der Phosphoglucomutase der menschlichen Spermien (Sp.-PGM1). Hum. Genet.10, 85–87 (1970).

    Google Scholar 

  111. Radam, G., Strauch, H.: Die Darstellung der Phosphoglucomutase-Varianten. Ärztl. Lab.15, 7–12 (1969).

    Google Scholar 

  112. Brinkmann, B., Fritz, E.: Elektrophoretische Darstellung der Isoenzyme der Phosphoglucomutase. Ärztl. Lab.14, 15–18 (1968).

    Google Scholar 

  113. Oepen, I.: Dünnschicht-Stärkegel-Elektrophorese zur Bestimmung der Phosphoglucomutase-Typen an Blutspuren. Z. Rechtsmedizin67, 309–312 (1970).

    Google Scholar 

  114. Monn, E.: Phosphoglucomutase (PGM) type determination by agar gel electrophoresis. Vox Sang. (Basel)14, 70–78 (1968).

    Google Scholar 

  115. Kneiphoff, H., Nagel, V.: Bestimmung der Phosphoglucomutase. Ärztl. Lab.16, 354–360 (1970).

    Google Scholar 

  116. Bocchini, V., Alioto, M. R., Najjar, V. A.: The sulfhydrylgroups of rabbit muscle phosphoglucomutase. Biochemistry6, 313 (1967).

    Google Scholar 

  117. Handler, P., Hashimoto, T. A., Joshi, J. G., Dougherty, H., Hanbusa, K., DelRio, C.: Phosphoglucomutase: evolution of an enzyme. Israel J. med. Sci.1, 1173 (1965).

    Google Scholar 

  118. Bergmeyer, H. V.: Methoden der enzymatischen Analyse. Weinheim/Bergstr.: Verlag Chemie 1962.

    Google Scholar 

  119. Harshman, S., Robinson, J. P., Bocchini, V., Najjar, V. A.: Activation of phosphoglucomutase. Biochemistry4, 396–400 (1965).

    Google Scholar 

  120. Zwarenstein, H., Schyff, van der: Inhibition of phosphoglucomutase by citrate. Biochem. biophys. Res. Commun.26, 372–375 (1967).

    Google Scholar 

  121. Hashimoto, T., Sasaki, H., Yoshikawa, H.: Hormonal control of phosphoglucomutase activity. Biochem. biophys. Res. Commun.27, 368–371 (1967).

    Google Scholar 

  122. Radam, G., Strauch, H.: Die Darstellung der Phosphoglucomutase-Varianten. Ärztl. Lab.15, 7–12 (1969).

    Google Scholar 

  123. Fritz, E., Brinkmann, B.: Zum Beweiswert der Phosphoglucomutase im Vaterschaftsverfahren. Beitr. gerichtl. Med.25, 216–221 (1969).

    Google Scholar 

  124. McAlpine, P. J., Hopkinson, D. A., Harris, H.: Molecular size estimates of the human phosphoglucomutase isozymes by gel filtration chromatography. Ann. hum. Genet.34, 177–185 (1970).

    Google Scholar 

  125. — — —: Thermostability studies on the isozymes of human phosphoglucomutase. Ann. hum. Genet.34, 61–71 (1970).

    Google Scholar 

  126. Monn, E.: Human red cell phosphoglucomutase (PGM) types in Norway. Hum. Hered.19, 274–282 (1969).

    Google Scholar 

  127. Bajatzadeh, M., Walter, H., Palsson, J.: Phosphoglucomutase (EC 2.7.5.1.) and adenylate kinase (EC 2.7.4.3.) typings in Koreans and Irish. Hum. Genet.7, 353–355 (1969).

    Google Scholar 

  128. Renninger, W., Spielmann, W.: Beitrag zur Genetik der Erythrocyten-Phosphoglucomutase. Hum. Genet.8, 64–66 (1969).

    Google Scholar 

  129. Bütler, R.: Frequenzen der Phosphoglucomutase. Tagg. Ges. forens. Blutgruppenkunde, Travemünde 1969.

  130. Herbich, J., Pesendorfer, F.: Anwendung des Enzymsystems der Erythrozyten-Phosphoglukomutase bei der Vaterschaftsbegutachtung. Wien. klin. Wschr.38, 661–667 (1969).

    Google Scholar 

  131. Modiano, G.: Atti Ass. Genet. Ital.13, 104–106 (1968).

    Google Scholar 

  132. Lie-Injo, L. E., Lopez, C. E., Poey-Oey-Hoey, G.: Erythrocyte and leucocyte phosphoglucomutase in chinese. Amer. J. hum. Genet.20, 101 (1968).

    Google Scholar 

  133. Monn, E.: Red cell phosphoglucomutase (PGM) types of norwegian lapps (characteristic gene frequencies and variant types). Hum. Hered.19, 264–273 (1969).

    Google Scholar 

  134. Wille, B., Schmidt, E., Ritter, H.: Population genetics of red cell phosphoglucomutase (EC 2.7.5.1.): gene frequencies in southwestern Germany. Hum. Genet.5, 271–273 (1968).

    Google Scholar 

  135. Mourant, A. E., Tills, D.: Phosphoglucomutase frequencies in habbanite jews and Icelanders. Nature (Lond.)214, 810 (1967).

    Google Scholar 

  136. Brewer, G. J., Bowbeer, D. R., Tashian, R. E.: The electrophoretic phenotypes of red cell phosphoglucomutase, adenylate kinase and acid phosphatase in the american negro. Acta genet. (Basel)17, 97–103 (1967).

    Google Scholar 

  137. Wille, B., Schmidt, E., Ritter, H.: Zur formalen Genetik der Phosphoglucomutasen (EC: 2.7.5.1.); Untersuchung von 366 Familien. Hum. Genet. 8, 67–68 (1969).

    Google Scholar 

  138. Monn, E.: Genetics of the phosphoglucomutase (PGM) system of human red cells. Hum. Hered.19, 365–374 (1969).

    Google Scholar 

  139. Renninger, W.: Isozymmuster der Phosphoglucomutase der menschlichen Thrombocyten (Thr.-PGM1). Hum. Genet. 8, 255–257 (1969).

    Google Scholar 

  140. Arndt-Hanser, A.: Frequenzen der Phosphoglucomutase. Tagg. Ges. forens. Blutgruppenkunde Travemünde 1969.

  141. Wraxall, B., Culliford, B.: A thin-layer starch gel method for enzyme typing of bloodstains. J. forensic Sci. Soc. 8, 81–82 (1968).

    Google Scholar 

  142. Culliford, B.: The determination of phosphoglucomutase types in bloodstains. J. forensic Sci. Soc.7, 131–133 (1967).

    Google Scholar 

  143. Brinkmann, B.: Bestimmung der Phosphoglucomutase-Typen aus Blutspuren. Dtsch. Z. ges. gerichtl. Med.66, 31–34 (1969).

    Google Scholar 

  144. Fildes, R. A., Parr, C. W.: Human red cell phosphogluconate dehydrogenasea. Nature (Lond.)200, 890–891 (1963).

    Google Scholar 

  145. Bowman, J. E., Carson, P. E., Frischer, H., Garay, A. L.: Genetics of starch-gel electrophoretic variants of human 6-PGD: population and family studies in the United States and in Mexico. Nature (Lond.)210, 811–813 (1966).

    Google Scholar 

  146. Parr, C. W., Fitch, L. I.: Inherited quantitative variations of human phosphogluconate dehydrogenase. Ann. hum. Genet.30, 339–350 (1967).

    Google Scholar 

  147. Ritter, H., Baitsch, H., Wolf, U.: Zur formalen Genetik von Isoenzymen, dargestellt am Beispiel der 6-PGD (EC: 1.1.1.44). Hum. Genet.7, 1–4 (1969).

    Google Scholar 

  148. Ropers, H., Op't Hof, J.: On the genetic interpretation of the 6-phosphogluconate dehydrogenase-isozymes in man. Vox Sang. (Basel)18, 244–250 (1970).

    Google Scholar 

  149. Carter, N. D., Fildes, R. A., Fitch, L. I., Parr, C. W.: Genetically determined electrophoretic variations of human phosphogluconate dehydrogenase. Acta genet. (Basel)18, 109–122 (1968).

    Google Scholar 

  150. Parr, C. W.: Erythrocyte phosphogluconate dehydrogenase Polymorphism. Nature (Lond.)210, 487–489 (1966).

    Google Scholar 

  151. Tariverdian, G., Ropers, H., Op't Hof, J., Ritter, H.: Zur Genetik der 6-Phosphogluconatdehydrogenase (EC: 1.1.1.44): Eine neue Variante F (Freiburg). Hum. Genet.10, 355–357 (1970).

    Google Scholar 

  152. Blake, N. M., Kirk, R. L.: New genetic variant of 6-phosphogluconate dehydrogenase in Australien aborigines Nature (Lond.)221, 278 (1969).

    Google Scholar 

  153. Smerling, M.: Phosphogluconat-Dehydrogenase (PGD). Stichprobe aus der Berliner Bevö lkerung. Z. Rechtsmedizin68, 20–26 (1971).

    Google Scholar 

  154. Davidson, R. G.: Elektrophoretic variants of human 6-phosphogluconate dehydrogenase: population and family studies and description of a new variant. Ann. hum. Genet.30, 355–360 (1967).

    Google Scholar 

  155. Parr, C. W.: Persönliche Mitteilung: zit. nach Smerling [153].

  156. —, Fitch, L. I.: Hereditary partial deficiency of human erythrocyte phosphogluconate dehydrogenase. Biochem. J.93, 28C-30C (1964).

    Google Scholar 

  157. Dern, R. J., Brewer, G. J., Tashian, R. E., Shows, T. B.: Hereditary variation of erythrocytic 6-phosphogluconate dehydrogenase. J. Lab. clin. Med.67, 255–264 (1966).

    Google Scholar 

  158. Carter, N. D., Gould, S. R., Parr, C. W., Walter, P. H.: Differential inhibition of human red cell phosphogluconate-dehydrogenase variants. Biochem. J.97, 17–18P (1966).

    Google Scholar 

  159. Parr, C. W., Parr, B.: Stability differences of inherited variants of human red cell phosphogluconate dehydrogenase. Biochem. J. 97, 16P (1966).

    Google Scholar 

  160. Kazazian, H. H. Jr.: Molecular size studies on 6-phosphogluconate dehydrogenase. Nature (Lond.212, 197–198 (1966).

    Google Scholar 

  161. Op't Hof, J., Wolf, U., Ritter, H.: Zur Populationsgenetik der 6-Phosphogluconat-dehydrogenasen (EC: 1.1.1.44): Genhäufigkeit in einer südwestdeutschen Stichprobe. Hum. Genet.6, 338–339 (1968).

    Google Scholar 

  162. Gordon, H., Keraan, M. M., Vooijs, M.: Variants of 6-phosphogluconate dehydrogenase within a community. Nature (Lond.)214, 466–467 (1967).

    Google Scholar 

  163. Shih, L.-Y., Hsia, Y. Y., Bowman, J. E., Shih, S.-C., Shih, P.-L.: The electrophoretic phenotypes of red cell 6-phosphogluconate dehydrogenase and adenylate kinase in chinese populations. Amer. J. hum. Genet.20, 474–477 (1968).

    Google Scholar 

  164. Azevedo, E. S.: Adenylate kinase and phosphogluconate dehydrogenase polymorphisms in northeastern Brazil. Amer. J. hum. Genet.21, 1–6 (1970).

    Google Scholar 

  165. Ropers, H., Ritter, H.: Zur formalen Genetik der 6-Phosphogluconatdehydrogenasen (EC: 1.1.1.44), Untersuchung von 220 Familien. Hum. Genet. 8, 69–70 (1969).

    Google Scholar 

  166. Brinkmann, B., Thoma, G.: Forensische Verwertbarkeit weiterer Enzympolymorphismen: Adenylatkinase, 6-Phosphogluconat-Dehydrogenase und Adenosin-Deaminase. Beitr. gerichtl. Med.29, (im Druck).

  167. — Dirks, J., Koops, E.: Identification and demonstration of three enzyme polymorphisms from blood stains by simultaneous electrophoresis. (In Vorbereitung.)

  168. Spencer, N., Hopkinson, D. A., Harris, H.: Adenosine deaminase polymorphism in man. Ann. hum. Genet.32, 9–14 (1968).

    Google Scholar 

  169. Hopkinson, D. A., Cook, P. J. L., Harris, H.: Further data on the adenosine deaminase (ADA) Polymorphism and a report of a new phenotype. Ann hum. Genet.32, 361–367 (1969).

    Google Scholar 

  170. Dissing, J., Knudsen, J. B.: A new red cell adenosine deaminase phenotype in man. Hum. Hered.19, 375–377 (1969).

    Google Scholar 

  171. Detter, J. C., Stamatoyannopoulos, G., Giblett, E. R., Motulsky, A. G.: Adenosine deaminase: racial distribution and report of a new phenotype. J. med. Genet.7, 356–357 (1970).

    Google Scholar 

  172. Renninger, W., Bimboese, Ch.: Zur Genetik der Erythrocyten-Adenosindesaminase. Hum. Genet.9, 34–37 (1970).

    Google Scholar 

  173. — —: Adenosindesaminase-Isozymsystem. Ärztl. Lab.16, 139–143 (1970).

    Google Scholar 

  174. Sonneborn, H.-H., Renninger, W.: Bestimmung der Adenosindesaminase- Isoenzyme mittels Celluloseacetat folien-Elektrophorese. Ärztl. Lab.16, 291–294 (1970).

    Google Scholar 

  175. Hopkinson, D. A., Harris, H.: The investigation of reactive sulphydryls in enzymes and their variants by starch gel electrophoresis. Studies on red cell adenosine deaminase. Ann. hum. Genet.33, 81–87 (1969).

    Google Scholar 

  176. Lefevre, H., Niebuhr, R.: Polymorphismus der Adenosindesaminase (Untersuchung an einer Stichprobe aus der Berliner Bevölkerung). Hum. Genet.10, 88–90 (1970).

    Google Scholar 

  177. Tariwerdian, G., Ritter, H.: Population genetics of adenosine deaminase (EC: 3.6.4.4): gene frequencies in southwestern Germany. Hum. Genet.7, 179 (1969).

    Google Scholar 

  178. Scozzari, R., Santolamazza, C.: Studies on the red cell adenosine deaminase polymorphism in Rome. Hum. Genet. 8, 364–365 (1970).

    Google Scholar 

  179. Tariwerdian, G., Bitter, H.: Adenosine deaminase polymorphism (EC: 3.5.4.4): formal genetics and linkage relations. Hum. Genet.7, 176–178 (1969).

    Google Scholar 

  180. Dissing, J., Knudsen, J. B.: Human erythrocyte adenosine deaminase polymorphism in Denmark. Hum. Hered.20, 178–181 (1970).

    Google Scholar 

  181. Todd, J. K., Bell, J. L., Baron, D. N.: Assay and distribution of adenylate kinase in human tissues. Biochem. J.90, 7P-8P (1964).

    Google Scholar 

  182. Fildes, R. A., Harris, H.: Genetically determined variation of adenylate kinase in man. Nature (Lond.)209, 261–263 (1966).

    Google Scholar 

  183. Bowman, J. E., Frischer, H., Ajmar, F., Carson, P. E., Gower, M. K.: Population, family and biochemical investigation of human adenylate kinase polymorphism. Nature (Lond.)214, 1156–1158 (1967).

    Google Scholar 

  184. Radam, G., Strauch, H.: Populationsgenetik der Adenylatkinase (EC: 2.7.4.3.) Hum. Genet.6, 90–92 (1968).

    Google Scholar 

  185. — —: Ein sehr seltener Phänotyp im Isoenzymsystem der Adenylatkinase des Menschen: AK 3-2. Hum. Genet.11, 264–265 (1971).

    Google Scholar 

  186. Rapley, S., Robson, E. B., Harris, H.: Data on the incidence, segregation and linkage relations of the adenylate kinase (AK) polymorphism. Ann. hum. Genet.31, 237–242 (1967).

    Google Scholar 

  187. Szeinberg, A., Gavendo, S., Cahane, D.: Erythrocyte adenylate-kinase deficiency. Lancet1969I, 316–316.

  188. — Kahana, D., Gavendo, S., Zaidman, J., Ben-Ezzer, J.: Hereditary deficiency of adenylate kinase in red blood cells. Acta haemat. (Basel)42, 111–126 (1969).

    Google Scholar 

  189. Radam, G., Strauch, H.: Bestimmung der Adenylatkinase-Varianten beim Menschen. Dtsch. Z. ges. gerichtl. Med.63, 166–170 (1968).

    Google Scholar 

  190. Oepen, I., Dure, V.: Dünnschicht-Stärkegel-Elektrophorese zur Bestimmung der Adenylatkinasetypen an Blutspuren. Ärztl. Lab.16, 383–387 (1970).

    Google Scholar 

  191. Dixon, M., Webb, E. C.: Enzymes. New York: Academic Press 1964.

    Google Scholar 

  192. Berg, K.: Genetic studies of the adenylate kinase (AK) polymorphism. Hum. Hered.19, 239–248 (1969).

    Google Scholar 

  193. Böckelmann, W., Wolf, V., Ritter, H.: Polymorphism of the phosphotransferase adenylate kinase and pyruvate kinase. Existence of a common subunit? Hum. Genet.6, 78–83 (1968).

    Google Scholar 

  194. Brock, J. H.: Evidence against a common subunit in Adenylate kinase and pyruvate kinase. Hum. Genet.10, 30–34 (1970).

    Google Scholar 

  195. Modiano, G., Scozzari, R., Gigliani, F., Santolamazza, O., Spennati, G. F., Saini, P.: Enzyme activity in two red cell adenylate kinase phenotypes. Amer. J. hum. Genet.22, 292–297 (1970).

    Google Scholar 

  196. Böckelmann, W., Ritter, H.: Tissue variability of the phosphotransferases adenylate kinase (EC 2.7.4.3.) and pyruvate kinase (EC 2.7.1.40) Hum. Genet.6, 373–376 (1968).

    Google Scholar 

  197. Mayr, W. R., Pausch, V.: Die Adenylatkinasegruppen (Verteilung in Wien und Anwendung in der Paternitätsserologie). Ärztl. Lab.16, 53–54 (1970).

    Google Scholar 

  198. Modiano, G., Scozzari, R., Gigliani, F., Santolamazza, C., Frattaroli, W.: Gene frequencies of adenylatekinase polymorphism in the roman population Hum. Genet.8, 253–254 (1969).

    Google Scholar 

  199. — — —, Filippi, G., Latte, B.: Studies on red cell phosphoglucomutase and adenylate kinase polymorphisms in Sardinia. Acc. Naz. Lincei42, 906–915 (1967).

    Google Scholar 

  200. Wille, B., Ritter, H.: Zur Populationsgenetik der Adenylatkinase: Genhäufigkeit in einer südwestdeutschen Stichprobe. Hum. Genet.5, 278–280 (1968).

    Google Scholar 

  201. Brinkmann, B., Bahmann, M., Thoma, G.: Der Polymorphismus der Adenylatkinase (EC 2.7.4.3) Genfrequenzen und Anwendbarkeit in der forensischen Serologie. Z. Rechtsmed.68, 73–78 (1971).

    Google Scholar 

  202. Culliford, B. J., Wraxall, B. G. D.: Adenylate kinase (AK) types in bloodstains. J. forensic Sci. Soc. 8, 79–80 (1968).

    Google Scholar 

  203. Hopkinson, D. A., Corney, G., Cook, P. J. L., Robson, E. B.: Genetically determined electrophoretic variants of human red cell NADH diaphorase. Ann. hum. Genet.34, 1–10 (1970).

    Google Scholar 

  204. Edwards, Y., Hopkinson, D. A., Harris, H.: Inherited variants of human nucleoside phosphorylase. Ann. hum. Genet.34, 395–408 (1971).

    Google Scholar 

  205. Chen, S.-H., Giblett, E. R.: Polymorphism of soluble glutamic-pyruvic-transaminase: A new genetic marker in man. Science173, 148–149 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinkmann, B. Erythrocytäre Enzympolymorphismen in der forensischen Serologie. Z Rechtsmed 69, 83–117 (1971). https://doi.org/10.1007/BF02093371

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02093371

Key-Words

Navigation