Skip to main content
Log in

Negative chemotaxis inSpirochaeta aurantia

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A repellent-gradient tube assay for negative chemotaxis inSpirochaeta aurantia was developed and used to demonstrate that acids, alcohols, and sulfide were effective chemorepellents. The threshold concentrations (the lowest concentration of a repellent that elicited a detectable response) for benzoic acid, salicylic acid, and butyric acid were 3×10−5 M. For acetic acid, propionic acid,p-aminobenzoic acid, propanol, butanol, and sulfide, threshold concentrations were 10−3 to 10−4 M. For formic acid, glyoxylic acid, glycolic acid, lactic acid, malonic acid, succinic acid, fumaric acid, methanol, ethanol, ethanediol, and propanediol, threshold concentrations were 10−2 to 10−3 M. Compounds such as methylamine, ethanolamine, formaldehyde, benzene, toluene, phenol, indol, nickel, and various amino acids did not elicit a repellent response. The results of competition experiments suggest that the repellents identified are recognized by three distinct receptors: a weak acid receptor, an alcohol receptor, and a sulfide receptor. The repellent responses to weak acids were maximal at pH 5.5 and decreased with increasing pH, whereas the response to propanol was unaffected by pH over a range of 5.5–8.0. The demonstration of negative chemotaxis inS. aurantia and the identification of distinct classes of repellents will allow further experimentation directed at understanding chemosensory mechanisms in spirochetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Adler J (1973) A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis byEscherichia coli. J Gen Microbiol 74:77–91

    PubMed  Google Scholar 

  2. Berg HC (1976) How spirochetes may swim. J Theor Biol 56:269–273

    PubMed  Google Scholar 

  3. Berg HC, Brown DA (1972) Chemotaxis inEscherichia coli analysed by three-dimensional tracking. Nature 239:500–504

    PubMed  Google Scholar 

  4. Breznak JA, Canale-Parola E (1975) Morphology and physiology ofSpirochaeta aurantia strains isolated from aquatic environments. Arch Microbiol 105:1–12

    PubMed  Google Scholar 

  5. Canale-Parola E (1977) Physiology and evolution of spirochetes. Bacteriol Rev 41:181–204

    PubMed  Google Scholar 

  6. Canale-Parola E (1978) Motility and chemotaxis of spirochetes. Annu Rev Microbiol 32:69–99

    PubMed  Google Scholar 

  7. Fosnaugh K, Greenberg EP (1988) Motility and chemotaxis ofSpirochaeta aurantia: computer-assisted motion analysis. J Bacteriol 170:1768–1774

    PubMed  Google Scholar 

  8. Fosnaugh K, Greenberg EP (1989) Chemotaxis mutants ofSpirochaeta aurantia. J Bacteriol 171:606–611

    PubMed  Google Scholar 

  9. Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner R, Margrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463

    PubMed  Google Scholar 

  10. Goulbourne EA Jr, Greenberg EP (1980) Relationship between proton motive force and motility inSpirochaeta aurantia. J Bacteriol 143:1450–1457

    PubMed  Google Scholar 

  11. Goulbourne EA Jr, Greenberg EP (1981) Chemotaxis ofSpirochaeta aurantia: involvement of membrane potential inchemosensory signal transduction. J Bacteriol 148:837–844

    PubMed  Google Scholar 

  12. Goulbourne EA Jr, Greenberg EP (1983) A voltage clamp inhibits chemotaxis ofSpirochaeta aurantia. J Bacteriol 153:916–920

    PubMed  Google Scholar 

  13. Greenberg EP, Canale-Parola E (1977) Chemotaxis inSpirochaeta aurantia. J Bacteriol 130:485–494

    PubMed  Google Scholar 

  14. Greenberg EP, Brahamsha B, Fosnaugh K (1985) The motile behavior ofSpirochaeta aurantia: a twist to chemosensory transduction in bacteria, pp. 107–117.In: Eisenbach M and Balaban M (eds.). Sensing and response in microorganisms. Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  15. Hess JF, Oosawa K. Matsumura P, Simon MI (1987) Protein phosphorylation is involved in bacterial chemotaxis. Proc Natl Acad Sci USA 84:7609–7613

    PubMed  Google Scholar 

  16. Hess JF, Oosawa K, Kaplan N, Simon MI (1988) Phosphorylation of three proteins in the signalling pathway of bacterial chemotaxis. Cell 53:79–87

    PubMed  Google Scholar 

  17. Kathariou S, Greenberg EP (1983) Chemoattractants elicit methylation of specific polypeptides inSpirochaeta aurantia. J Bacteriol 156:95–100

    PubMed  Google Scholar 

  18. Kihara M, Macnab RM (1981) Cytoplasmic pH mediates pH taxis and weak-acid repellent taxis of bacteria. J Bacteriol 145:1209–1221

    PubMed  Google Scholar 

  19. Larsen SH, Reader RW, Kort EN, Tso W-W, Adler J (1974) Change in direction of flagellar rotation is the basis of the chemotactic response inEscherichia coli. Nature 249:74–77

    PubMed  Google Scholar 

  20. Macnab RM (1977) Bacterial flagella rotating in bundles: a study in helical geometry. Proc Natl Acad Sci USA 74:221–225

    PubMed  Google Scholar 

  21. Margolin Y, Eisenbach M (1984) Voltage-clamp effects on bacterial chemotaxis. J Bacteriol 159:605–610

    PubMed  Google Scholar 

  22. Nowlin DM, Nettleson DO, Ordal GW, Hazelbauer GL (1985) Chemotactic transducer proteins ofEscherichia coli exhibit homology with methyl-accepting proteins from distantly related bacteria. J Bacteriol 163:262–266

    PubMed  Google Scholar 

  23. Oosawa K, Hess JF, Simon MI (1988) Mutants defective in bacterial chemotaxis show altered protein phosphorylation. Cell 53:89–96

    PubMed  Google Scholar 

  24. Parkinson JS (1988) Protein phosphorylation in chemotaxis. Cell 53:1–2

    PubMed  Google Scholar 

  25. Paster BJ, Stackebrandt E, Hespell RB, Hahn CM, Woese CR (1984) The phylogeny of spirochetes. Sys Appl Microbiol 5:337–351

    Google Scholar 

  26. Pfennig N (1969) Anreicherungskulturen für rote und grüne Schwefelbakterien. Zbl Bacteriol I Abt, Suppl 1:179–189

    Google Scholar 

  27. Pfennig N, Kippert KD (1966) Uber das Vitamin B12 Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–256

    Google Scholar 

  28. Repaske DR, Adler J (1981) Change in intracellular pH ofEscherichia coli mediates the chemotactic response to certain attractants and repellents. J Bacteriol 145:1196–1208

    PubMed  Google Scholar 

  29. Segall JE, Ishihara A, Berg HC (1985) Chemotactic signalling in filamentous cells ofEscherichia coli. J Bacteriol 161:51–59

    PubMed  Google Scholar 

  30. Tso W-W, Adler J (1974) Negative chemotaxis inEscherichia coli. J Bacteriol 118:560–576

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaempf, C., Greenberg, E.P. Negative chemotaxis inSpirochaeta aurantia . Current Microbiology 21, 187–192 (1990). https://doi.org/10.1007/BF02092120

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02092120

Keywords

Navigation