Skip to main content
Log in

Inhibition of the calcitonin-induced outward current in identifiedAplysia neurons by interleukin-1 and interleukin-2

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. The effects of bath-applied recombinant human interleukin-1 (rhIL-1) and interleukin-2 (rhIL-2) on the calcitonin (CT)-induced outward current recorded from identified neurons (R9–R12) ofAplysia kurodai were investigated with conventional voltage-clamp and pressure ejection techniques.

2. Micropressure ejection of CT onto the soma of the neuron induced a slow outward current [I o(CT); 4–6 nA in amplitude, 30–40 sec in duration] associated with a decrease in input membrane conductance.

3.I o(CT) was increased by hyperpolarization.

4. The extrapolated reversal potential was +10 mV. Additionally,I o(CT) was sensitive to changes in (Na+)o but not to changes in (K+)o, (Ca2+)o, and (Cl)o.

5. Micropressure-ejected forskolin produced a slow outward current similar to that induced by CT.

6. Bath-applied rhIL-1 and rhIL-2 (10–40 U/ml) reduced the CT-induced current in identifiedAplysia neurons without affecting the resting membrane conductance or the holding current.

7. The inhibitory effects of both cytokines on the current were completely reversible. Heat-inactivated rhIL-1 and rhIL-2 were without effect.

8. These results suggest that the immunomodulators, IL-1 and IL-2, can modulate the CT-induced outward current associated with a decrease in Na+ conductance in the nervous system ofAplysia. Therefore, the study suggests that these cytokines may also serve as neuromodulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araujo, D. M., Lapchak, P. A., Collier, B., and Quirion, R. (1989). Localization of interleukin-2 immunoreactivity in the rat brain: Interaction with the cholinergic system.Brain Res. 498257–266.

    Google Scholar 

  • Beck, G., and Habicht, G. S. (1986). Isolation and characterization of a primitive interleukin-1-like protein from an invertebrate,Asterias forvesi.Proc. Natl. Acad. Sci. USA 837429–7433.

    Google Scholar 

  • Beck, G., Vasta, G. R., Marchalonis, J. J., and Habicht, G. S. (1989). Characterization of interleukin-1 activity inTunicates.Comp. Biochem. Physiol. 92B93–98.

    Google Scholar 

  • Beckner, S. K., and Farrar, W. L. (1986). Interleukin-2 modulation of adenylate cyclase. Potential role of protein kinase C.J. Biol. Chem. 2613043–3047.

    Google Scholar 

  • Bindoni, M., Perciavalle, V., Berretta, S., Belluardo, N., and Diamantstein, T. (1988). Interleukin 2 modifies the bioelectric activity of some neurosecretory nuclei in the rat hypothalamus.Brain Res. 46210–14.

    Google Scholar 

  • Blatteis, C. M. (1990). Neuromodulative actions of cytokines.Yale J. Biol. Med. 63133–146.

    Google Scholar 

  • Dafny, N., Prieto-Gomez, B., and Reyes-Vazquez, C. (1985). Does the immune system communicate with the central nervous system?J. Neuroimmunol. 91–12.

    Google Scholar 

  • Dinarello, C. A. (1986). Multiple biological properties of recombinant human interleukin-1 (beta).Immunology 172301–305.

    Google Scholar 

  • Evans, S. W., Beckner, S. K., and Farrar, W. L. (1987). Stimulation of specific GTP binding and hydrolysis activities in lymphocyte membrane by interleukin-2.Nature 325166–168.

    Google Scholar 

  • Farrar, W. L., and Anderson, W. B. (1985). Interleukin-2 stimulates association of protein kinase C with plasma membrane.Nature 315233–235.

    Google Scholar 

  • Farrar, W. L., Hill, J. M., Harle-Bellan, A., and Vinocur, M. (1987). The immunological brain.Immunol. Rev. 100361–378.

    Google Scholar 

  • Fischer, J. A., Tobler, P. H., Henke, H., and Tschop, F. A. (1983). Salmon and human calcitonin-like peptides coexist in the human thyroid and brain.J. Clin. Endocrinol. Metab. 571314–1316.

    Google Scholar 

  • Frazier, W. T., Kandel, E. R., Kupfermann, I., Waziri, R., and Coggeshall, R. E. (1967). Morphological and functional properties of identified neurons in the abdominal ganglion ofAplysia californica.J. Neurophysiol. 301288–1351.

    Google Scholar 

  • Giulian, D., and Lachman, L. B. (1985). Interleukin-1 simulation of astroglial proliferation after brain inuury.Science 228497–499.

    Google Scholar 

  • Giulian, D., Baker, T. J., Shih, L.-C. N., and Lachman, L. B. (1986). Interleukin-1 of the central nervous system is produced by ameboid microglia.J. Exp. Med. 164594–604.

    Google Scholar 

  • Giulian, D., Young, D. G., and Woodward, J. (1988). Interleukin-1 is an astroglial growth factor in the developing brain.J. Neurosci. 8 709–714.

    Google Scholar 

  • Hori, T., Shibata, M., Nakashima, M., Asami, A., Asami, T., and Koga, H. (1988). Effects of interleukin-1 and arachidonate on the preoptic and anterior hypothalamic neurons.Brain Res. Bull. 2075–82.

    Google Scholar 

  • Hughes, T. K., Chin, R., Smith, E. M., Leung, M. K., and Stefano, G. B. (1991). Similarities of signal system in vertebrates and invertebrates. Detection, action and interactions of immunoreactive monokines in theMytulus edulis.Adv. Neuroimmunol. 159–70.

    Google Scholar 

  • Miller, L. G. Galpern, W. R., Dunlap, K., Dinarello, C. A., and Turner, T. J. (1991). Interleukin-1 augmentsγ-aminobutyric acid A receptor function in brain.Mol. Pharmacol. 39105–108.

    Google Scholar 

  • Nakashima, T., Hori, T., Mori, T., Kuriyama, K., and Mizuno, K. (1989). Recombinant human interleukin-1β alters the activity of preoptic thermosensitive neurons in vitro.Brain Res. Bull. 23209–213.

    Google Scholar 

  • Oomura, Y. (1988). Chemical and neuronal control of feeding motivation.Physiol. Behav. 44555–560.

    Google Scholar 

  • Paemen, L. R., Porchet-Hennere, E., Masson, M., Leung, M. K., Hughes, T. K., and Stefano, G. B. (1992). Glial localization of interleukin-1α in invertebrate ganglia.Cell. Mol. Neurobiol. 12463–473.

    Google Scholar 

  • Plata-Salaman, C. R., and French-Mullen, J. M. H. (1992). Interleukin-1β depresses calcium currents in CA1 hippocampal neurons at pathophysiological concentrations.Brain Res. Bull. 29221–223.

    Google Scholar 

  • Plata-Salaman, C. R., Oomura, Y., and Kai, Y. (1988). Tumor necrosis factor and interleukin-1β: Suppression of food intake by direct action in the central nervous system.Brain Res. 448106–114.

    Google Scholar 

  • Primi, M. P., and Bueno, L. (1986). Centrally mediated stimulation of jejunal water and electrolyte secretion by calcitonin in dogs.Am. J. Physiol. 250G172-G176.

    Google Scholar 

  • Sasayama, Y., Kotoh, A., Oguro, C., Kambegawa, A., and Yoshizawa, H. (1991). Cells showing immunoreactivity for calcitonin or calcitonin gene-related peptide (CGRP) in the central nervous system of some invertebrates.Gen. Comp. Endocrinol. 83406–414.

    Google Scholar 

  • Sawada, M., Hara, N., and Ichinose, M. (1992). Interleukin-2 inhibits the GABA-induced Cl current in identifiedAplysia neurons.J. Neurosci. Res. 33461–465.

    Google Scholar 

  • Sawada, M., Hara, N., and Maeno, T. (1991a). Tumor necrosis factor reduces the ACh-induced outward current in identifiedAplysia neurons.Neurosci. Lett. 131217–220.

    Google Scholar 

  • Sawada, M., Hara, N., and Maeno, T. (1991b). Ionic mechanism of the outward current induced by extracellular ejection of interleukin-1 onto identified neurons ofAplysia.Brain Res. 545248–256.

    Google Scholar 

  • Sawada, M., Ichinose, M., Ishikawa, S., and Sasayama, Y. (1993). Calcitonin induces a decreased Na+ conductance in identified neurons ofAplysia.J. Neurosci. Res. 36200–208.

    Google Scholar 

  • Seamon, K. B., Padgett, W., and Daly, J. W. (1981). Forskolin: Unique diterpene activator of adenylate cyclase in membranes and intact cells.Proc. Natl. Acad. Sci. USA 783363–3367.

    Google Scholar 

  • Shimizu, N., and Oomura, Y. (1986). Calcitonin-induced anorexia in rats: Evidence for its inhibitory action on lateral hypothalamic chemosensitive neurons.Brain Res. 367128–140.

    Google Scholar 

  • Smith, K. A. (1988). Interleukin-2: Inception, impact and implications.Science 2401169–1176.

    Google Scholar 

  • Stefano, G. B. (1989). Role of opioid neuropeptides in immunoregulation.Prog. Neurobiol. 33149–159.

    Google Scholar 

  • Stefano, G. B. (1992). Invertebrate and vertebrate neuroimmune and autoimmunoregulatory commonalties involving opioid peptides.Cell. Mol. Neurobiol. 12357–366.

    Google Scholar 

  • Szucs, A., Stefano, G. B., Hughes, T. K., and S-Roza, K. (1992). Modulation of voltage-activated ion currents on identified neurons ofHelix pomatia L. by interleukin-1.Cell. Mol. Neurobiol. 12429–438.

    Google Scholar 

  • Tancredi, V., Zona, C., Veltotti, F., Eusebi, F., and Santoni, A. (1990). Interleukin-2 suppresses established long-term potentiation and inhibits its induction in the rat hippocampus.Brain Res. 525149–151.

    Google Scholar 

  • Weigent, D. A., and Blalock, J. E. (1987). Interactions between the neuroendocrine and immune systems: Common hormones and receptors.Immunol. Rev. 10079–108.

    Google Scholar 

  • Zona, C., Palma, E., Santoni, A., Grassi, F., and Eusebi, F. (1990). Interleukin-2 reduces voltage-activated Na+-currents in embryonic rat hippocampal neurons.Soc. Neurosci. Abstr. 16181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawada, M., Ichinose, M. & Stefano, G.B. Inhibition of the calcitonin-induced outward current in identifiedAplysia neurons by interleukin-1 and interleukin-2. Cell Mol Neurobiol 14, 175–184 (1994). https://doi.org/10.1007/BF02090783

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02090783

Key words

Navigation