Skip to main content
Log in

Differential suppression of axoplasmic transport: Effects of light irradiation to the growth cone of cultured dorsal root ganglion neurons

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. Growth cones of cultured dorsal root ganglion neurons from mice were irradiated using a mercury lamp.

2. The flux of particles of fast retrograde axoplasmic transport decreased promptly after light irradiation without a change in velocity.

3. That of anterograde transport decreased as well, but with a significant latency. The decrease in the anterograde flux was attributed to decreased velocity of particles.

4. Video-enhanced contrast microscopy of growth cones revealed transient swelling of growth cones and transient stagnation of particles in growth cones.

5. The longer the neurite, the larger the latency of the change of the anterograde transport; peripheral information was calculated to be conveyed to the cell body at a speed of 6 µm/min.

6. The mechanism of this information conveyance and the export of materials from the cell body are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R. D., and Allen, N. S. (1983). Video-enhanced microscopy with a computer frame memory.J. Microsc. 1293–17.

    PubMed  Google Scholar 

  • Allen, R. D., Metuzals, J., Tasaki, I., Brady, S. T., and Gilbert, S. P. (1982). Fast axonal transport in squid giant axon.Science 2181127–1129.

    PubMed  Google Scholar 

  • Breuer, A. C., Allen, R. D., and Lewis, L. J. (1981). Rapid transport in neurites of “submicroscopic” structures: Analysis by the new AVEC-DIC microscopy method.Neurology 31118.

    Google Scholar 

  • Campenot, R. B. (1977). Local control of neurite development by nerve growth factor.Proc. Natl. Acad. Sci. USA 744516–4519.

    PubMed  Google Scholar 

  • Davies, A., and Lumsden, A. (1984). Relation of target encounter and neuronal death to nerve growth factor responsiveness in the developing mouse trigeminal ganglion.J. Comp. Neurol. 223124–137.

    Article  PubMed  Google Scholar 

  • Esquerro, E., Garcia, A. G., and Sanches-Garcia, P. (1980). The effects of the calcium ionophore, A23187, on the axoplasmic transport of dopamine beta-hydroxylase.Br. J. Pharmacol. 70375–381.

    PubMed  Google Scholar 

  • Forman, D. S., Brown, K. J., and Promersberger, M. E. (1983). Selective inhibition of retrograde axonal transport by erythro-9-[3-(2-hydroxynonyl)] adenine.Brain Res. 272194–197.

    Article  PubMed  Google Scholar 

  • Forman, D. S., Lynch, K. J., and Smith, R. S. (1987). Organella dynamcis in lobster axons: Anterograde, retrograde and stationary mitochondria.Brain Res. 41296–106.

    Article  PubMed  Google Scholar 

  • Inoue, S. (1986).Video Microscopy, New York, Plenum Press, pp. 1–529.

    Google Scholar 

  • Jeffrey, P. I., James, K. A. C., Kidman, A. D., Richard, A. M., and Austin, L. (1972). The flow of mitochondria in chicken sciatic nerve.J. Neurobiol. 3199–208.

    Article  PubMed  Google Scholar 

  • Kawakami, T., Hikawa, N., Kusakabe, T., Kano, M., Bandou, Y., Gotoh, H., and Takenaka, T. (1993). Mechanism of inhibitory action of capsaicin on particulate axoplasmic transport in sensory neurons in culture.J. Neurobiol. 24545–551.

    Article  PubMed  Google Scholar 

  • LaVail, J. H., and LaVail, M. M. (1972). Retrograde axonal transport in the central nervous system.Science 1761416–1417.

    PubMed  Google Scholar 

  • Martenson, C., Stone, K., Reedy, M., and Sheetz, M. (1993). Fast axonal transport is required for growth cone advance.Nature 36666–69.

    Article  PubMed  Google Scholar 

  • Ochs, S. (1982).Axoplasmic Transport and Its Relation to Other Nerve Functions, John Wiley & Sons, New York, pp. 1–462.

    Google Scholar 

  • Ochs, S., and Smith, C. (1971). Effect of temperature and rate of stimulation on fast axoplasmic transport in mammalian nerve fibers.Fed. Proc. 30665.

    Google Scholar 

  • Sommer, E. W., Kazimierczak, J., and Droz, B. (1985). Neuronal subpopulations in the dorsal root ganglion of the mouse as characterized by combination of ultrastructural and cytochemical features.Brain Res. 346310–326.

    Article  PubMed  Google Scholar 

  • Takenaka, T., Kawakami, T., Hikawa, N., and Gotoh, H. (1990). Axoplasmic transport of mitochondria in cultured dorsal root ganglion cells.Brain Res. 346285–290.

    Article  Google Scholar 

  • Tsukita, S., and Ishikawa, H. (1980). The movement of membranous organelles in axons. Electron microscopic identification of anterogradely and retrogradely transported organelles.J. Cell Biol. 84513–530.

    Article  PubMed  Google Scholar 

  • Worth, R. M., and Ochs, S. (1976). The effects of repetitive electrical stimulation on axoplasmic transport.Soc. Neurosci. Abstr. 250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kano, M., Tashiro, H., Kawakami, T. et al. Differential suppression of axoplasmic transport: Effects of light irradiation to the growth cone of cultured dorsal root ganglion neurons. Cell Mol Neurobiol 15, 297–306 (1995). https://doi.org/10.1007/BF02089941

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02089941

Key words

Navigation