Cellular and Molecular Neurobiology

, Volume 14, Issue 5, pp 439–457 | Cite as

Antisense inhibition of low-affinity nerve growth factor receptor in kidney cultures: Power and pitfalls

  • K. Sainio
  • M. Saarma
  • D. Nonclercq
  • L. Paulin
  • H. Sariola


1. Antisense inhibition of gene expression implies that the expression of the target protein is selectively inhibited at either the translational or the transcriptional level by complementary DNA or RNA constructs that are antiparallel to the target sequence. The antisense inhibition strategy provides means to study the roles of individual proteins and has, in spite of its limitations, gained a wide range of both therapeutic and experimental applications.

2. In developmental biology, protein expression has been selectively inhibited by the use of antisense gene transfection and by antisense deoxyoligonucleotides. The transfectability of embryonic tissues is variable, but in general fetal and embryonic cells take up foreign DNA relatively efficiently, in particular, short deoxyoligonucleotides that penetrate mesenchymal cells within a few hours without any manipulation.

3. We have now evaluated the advantages and pitfalls of antisense inhibition by deoxyoligonucleotides in organ culture and describe our experience from the inhibition of low-affinity nerve growth factor receptor expression in embryonic mouse and rat kidneys.

4. The expression of nerve growth factor receptor can be specifically inhibited by deoxyoligonucleotides, but the target sequence-dependent window of, in particular, phosphorothioate-modified oligonucleotides is quite narrow. The culture conditions affect the response to the oligonucleotides and their cellular incorporation is variable with respect to the cell type and stage of differentiation.

Key words

deoxyoligonucleotide inhibition kidney morphogenesis nerve growth factor receptor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D. (1990). Basic local alignment search tool.J. Mol. Biol. 215403–410.PubMedGoogle Scholar
  2. Avner, E., Ellis, D., Temple, T., and Jaffe, R. (1982). Metanephric development in serum-free organ culture.In Vitro 18675–682.PubMedGoogle Scholar
  3. Bengtström, M., and Paulin, L. (1991). Synthesis and purification of thio-oligonucleotides.Nucleic Acids Res. Symp. Ser. 24288.Google Scholar
  4. Cazenave, C., Stein, C., Loreau, N., Thuong, N., Neckers, L., Subasinghe, C., Hélène, C., Cohen, J., and Toulmé, J.-J. (1989). Comparative inhibition of rabbit globin mRNA translation by modified antisense oligodeoxynucleotides.Nucleic Acids Res. 174255–4273.PubMedGoogle Scholar
  5. Chao, M. (1992). Neurotrophin receptors: A window into neuronal differentiation.Neuron 9583–593.PubMedGoogle Scholar
  6. Coles, H., Burne, J., and Raff, M. (1993). Large-scale normal cell death in the developing rat kidney and its reduction by epidermal growth factor.Development 118777–784.PubMedGoogle Scholar
  7. Devereaux, J., Haeberli, P., and Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX.Nucleic Acids Res. 12387–395.PubMedGoogle Scholar
  8. Dressler, G., and Douglass, E. (1992). Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor.Proc. Natl. Acad. Sci. USA 891179–1183.PubMedGoogle Scholar
  9. Durbeej, M., Söderstöm, S., Ebendal, T., Birchmeier, C., and Ekblom, P. (1993). Differential expression of neurotrophin receptors during renal development.Development 119977–989.PubMedGoogle Scholar
  10. Ekblom, P., Miettinen, A., and Saxén, L. (1980). Induction of brush border antigens of the proximal tubule in the developing kidney.Dev. Biol. 74263–274.PubMedGoogle Scholar
  11. Grobstein, C. (1953). Inductive epithelio-mesenchymal interaction in cultured organ rudiments of the mouse.Science 11852–55.PubMedGoogle Scholar
  12. Grobstein, C. (1955). Inductive interaction in the development of the mouse metanephros.J. Exp. Zool. 130319–339.Google Scholar
  13. Grobstein, C. (1956). Trans-filter induction of tubules in mouse metanephrogenic mesenchyme.Exp. Cell Res. 10424–440.PubMedGoogle Scholar
  14. Koseki, C., Herzlinger, D., and Al-Awqati, Q. (1992). Apoptosis in metanephric development.J. Cell. Biol. 1191327–1333.PubMedGoogle Scholar
  15. Kreidberg, J., Sariola, H., Loring, J., Maeda, M., Pelletier, J., Housman, D., and Jaenicsh, R. (1993). WT-1 is required for early kidney development.Cell 74679–69.PubMedGoogle Scholar
  16. Lee, K.-F., Huber, L., Landis, S., Sharpe, A., Chao, M., and Jaenisch, R. (1992). Targeted mutation of the gene encoding the low-affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system.Cell 69737–749.PubMedGoogle Scholar
  17. Lee, K.-F., Davies, A., and Jaenisch, R. (1994). p75-deficient embryonic dorsal root sensory and neonatal sympathetic neurons display a decreased sensitivity to NGF.Development 1201027–1033.PubMedGoogle Scholar
  18. Lindsay, R., Shooter, E., Radeke, M., Misko, T., Dechant, G., Thoenen, H., and Lindholm, D. (1990). Nerve growth factor regulates expression of the nerve growth factor receptor gene in adult sensory neurons.Eur. J. Neurosci. 2389–396.PubMedGoogle Scholar
  19. Lombard, M.-N., and Grobstein, C. (1969). Activity of various embryonic and postembryonic sources for induction of kidney tubules.Dev. Biol. 1941–45.PubMedGoogle Scholar
  20. Metsis, M., Timmusk, T., Allikmets, R., Saarma, M., and Persson, H. (1992). Regulatory elements and transcriptional regulation by testosterone and retinoic acid of the rat nerve growth factor receptor promoter.Gene 121247–254.PubMedGoogle Scholar
  21. Persson, H., Auer-Le-Lievre, C., Söder, O., Villar, M., Metsis, M., Olson, L., Ritzen, M., and Hökfelt, T. (1990). Expression of beta-nerve growth factor receptor mRNA in Sertoli cells downregulated by testosterone.Science 248704–707.Google Scholar
  22. Platt, J., Brown, K., Granlund, K., Oegema, T., and Klein, D. (1987). Proteoglycan metabolism associated with mouse metanephric development: Morphological and biochemical effect of beta-D-xyloside.Dev. Biol. 123293–306.PubMedGoogle Scholar
  23. Postel, E., Flint, S., Kessler, D., and Hogan, M. (1991). Evidence that a triplex-forming deoxyribonucleotide binds to the c-myc promoter in HeLa cells, thereby reducing c-myc mRNA levels.Proc. Natl. Acad. Sci. USA 888227–8231.PubMedGoogle Scholar
  24. Pritchard-Jones, K., Fleming, S., Davidson, D., Bickmore, W., Porteous, D., Gosden, C., Bard, J., Buckler, A., Pelletier, J., Housman, D., van Heyningen, V., and Hastie, N. (1990). The candidate Wilms tumor gene is involved in genitourinary development.Nature 345194–197.Google Scholar
  25. Rabizadeh, S., Oh, J., Zhong, L., Yang, J., Bitler, C., Butcher, L., and Bredesen, D. (1993). Induction of apoptosis by the low-affinity NGF receptor. Science261345–358.PubMedGoogle Scholar
  26. Radeke, M., Misko, T., Hsu, C., Herzenberg, L., and Shooter, E. (1987). Gene transfer and molecular cloning of the rat nerve growth factor receptor.Nature 325593–597.PubMedGoogle Scholar
  27. Richter, A., Sanford, K., and Evans, V. (1972). Influence of oxygen and culture media on plating efficiency of some mammalian tissue cells.J. Natl. Cancer Inst. 491705–1712.PubMedGoogle Scholar
  28. Rothenpieler, U., and Dressler, G. (1993a). Pax-2 is required for mesenchyme-to-epithelium conversion during kidney development.Development 119711–720PubMedGoogle Scholar
  29. Rothenpieler, U., and Dressler, G. (1993b). Differential distribution of oligodeoxynucleotides in developing organs with epithelial-mesenchymal interactions.Nucleic Acids Res. 214961–4966.PubMedGoogle Scholar
  30. Sariola, H., Holm, K., and Henke-Fahle, S. (1988). Early innervation of the metanephric kidney.Development 104589–599.PubMedGoogle Scholar
  31. Sariola, H., Saarma, M., Saino, K., Arumäe, U., Palgi, J., Vaahtokari, A., Thesleff, I., and Karavanov, A. (1991). Dependence of kidney morphogenesis on the expression of nerve growth factor receptor.Science 254571–573.PubMedGoogle Scholar
  32. Saxén, L. (1987).Organogenesis of the Kidney, Cambridge University Press, Cambridge.Google Scholar
  33. Saxén, L., Koskimies, O., Lahti, A., Miettinen, H., Rapola, J., and Wartiovaara, J. (1968). Differentiation of kidney mesenchyme in an experimental model system. InAdvances in Morphogenesis, 7 (M. Abercombie, J. Brachet, and T. King, Eds.), Academic Press, London, pp. 251–293.Google Scholar
  34. Skryabin, K., Kraev, A., Morozov, S., Charkov, B., Rozanov, M., Lukasheva, L., and Atabekov, J. (1988). The nucleotide sequence of potato virus X RNA.Nucleic Acids Res. 1610929–10930.PubMedGoogle Scholar
  35. Thoenen, H. (1991). The changing scene of neurotrophic factors.Trends Neurosci. 14165–170.PubMedGoogle Scholar
  36. Unsworth, B., and Grobstein, C. (1970). Induction of kidney tubules in mouse metanephrogenic mesenchyme by various embryonic mesenchymal tissues.Dev. Biol. 21547–556.PubMedGoogle Scholar
  37. van de Krol, A., Mol, J., and Stuitje, A. (1988). Modulation of eukaryotic gene expression by complementary RNA or DNA sequences.BioTechniques 6 958–976.PubMedGoogle Scholar
  38. Virtanen, I., Miettinen, M., Lehto, V.-P. Kariniemi, A.-L., and Paasivuo, R. (1985). Diagnostic applications of monoclonal antibodies to intermediate filaments.Ann. N.Y. Acad. Sci. 455635–648.PubMedGoogle Scholar
  39. Vu, H., and Hirschbein, B. (1991). Internucleotide phosphite sulfirization with tetraethylthiuram disulfide. Phosphorothioate oligonucleotide synthesis via phosphoramidite chemistry.Tetrahedron Lett. 323005–3008.Google Scholar
  40. Wada, J., Liu, Z., Alvares, K., Kumar, A., Wallner, E., Makino, H., and Kanwar, Y. (1993). Cloning of cDNA for theαsubunit of mouse insulin-like growth factor I receptor and the role of the receptor in metanephric development.Proc. Natl. Acad. Sci. USA 9010360–10364.PubMedGoogle Scholar
  41. Wartiovaara, J., Lehtonen, E., Nordling, S., and Saxen, L. (1972). Do membrane filters prevent cell contacts?Nature 238407–408.PubMedGoogle Scholar
  42. Weller, A., Sorokin, L., Illgen, E.-M., and Ekblom, P. (1991). Development and growth of mouse embryonic kidney in organ culture and modulation of development by soluble growth factor.Dev. Biol. 144248–261.PubMedGoogle Scholar
  43. Zuker, M., and Stiegler, P. (1981). Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information.Nucleic Acids Res. 9133–148.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • K. Sainio
    • 1
  • M. Saarma
    • 2
  • D. Nonclercq
    • 1
  • L. Paulin
    • 2
  • H. Sariola
    • 1
    • 2
  1. 1.Department of PathologyUniversity of HelsinkiHelsinkiFinland
  2. 2.Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations