Journal of Scientific Computing

, Volume 11, Issue 2, pp 99–126

# A comparison of some standard elliptic solvers: CM-5 vs. Cray C-90

• Chang-Ock Lee
Article

## Abstract

The implementations of the domain decomposition, SOR, multigrid and conjugate gradient method on CM-5 and Cray C-90 are described for the Laplace's equation on the unit square and L-shaped region. Domain decomposition method uses the Schwarz alternating method. In each domain we take the one-dimensional FFT to convert the problem into the tridiagonal systems which are solved by the scientific libraries installed in the CM-5 and the Cray C-90. On the CM-5 the V-cycle multigrid with symmetric smoothings on P-1 finite element spaces is run with red/black Gauss-Seidel relaxation. Multigrid with natural order Gauss-Seidel relaxation is used on the Cray C-90. While natural order SOR is used in the Cray C-90, R/B SOR is performed on the CM-5. Multigrid is the fastest method on the CM-5 and three methods except SOR give similar performances on Cray C-90.

## Key words

Domain decomposition multigrid method SOR conjugate gradients parallel computation

## References

1. Bank, R. E. (1975). Marching algorithms for elliptic boundary value problems. Ph.D. Thesis, TR12-75, Harvard Univ., Cambridge, Massachusetts.Google Scholar
2. Bank, R. E., and Dupont, T. (1981). An optimal order process for solving finite element equations.Math. Comp. 36, 35–51.Google Scholar
3. Braess, D., and Hackbusch, W. (1983). A new convergence proof for the multigrid including the V-cycle.SIAM J. Numer. Anal. 20, 967–975.Google Scholar
4. Ciarlet, P. (1978).The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam.Google Scholar
5. Decker, N. H. (1991). Note on the parallel efficiency of the Frederickson-McBryan multigrid algorithm.SIAM J. Sci. Stat. Comput. 12, 208–220.Google Scholar
6. Decker, N. H., Mandel, J., and Parter, S. V. (1988). On the role of regularity in multigrid methods; In McCormick, S. F. (ed.)Multigrid Methods: Theory, Applications and Supercomputing. Marcel Dekker, New York, pp. 143–156.Google Scholar
7. Dongarra, J. J., Duff, I. S., Sorensen, D. C., and Van Der Vorst, H. A. (1991).Solving Linear Systems on Vector and Shared Memory Computers, SIAM, Philadelphia.Google Scholar
8. Frederickson, P., and McBryan, O. (1988). Parallel superconvergent multigrid. In McCormick, S. F (ed.)Multigrid Methods: Theory, Applications, and Supercomputing, Marcel Dekker, New York, pp. 195–210.Google Scholar
9. Hageman, L. A., and Young, D. (1981).Applied Iterative Methods. Academic Press, New York.Google Scholar
10. Karp, H., and Flatt, H. (1990). Measuring parallel processor performance.Comm. ACM 33, 539–543.Google Scholar
11. Lee, C.-O., and Parter, S. V. (1995). On the rate of convergence of thek ×k block,k-line iterative methods:k → ∞.Numer. Math. 71, 59–90.Google Scholar
12. Lions, P. L. (1988). On the Schwarz alternating method. I. In Glowinski, R., Golub, G. H., Meurant, G. A., and Périaux, J. (eds.).Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadelphia, pp. 1–42.Google Scholar
13. Mandel, J., McCormick, S., and Bank, R. (1987). Chapter 5. Variational multigrid theory. In McCormick, S. F. (ed.).SIAM Frontiers in Applied Math. SIAM, Philadelphia,3, pp. 131–177.Google Scholar
14. Strikwerda, J. C. (1989).Finite Difference Schemes and Partial Ditterential Equations. Wadworth and Brook/Cole, Pacific Grove, California.Google Scholar