Skip to main content
Log in

Developmental changes in the brain-stem serotonergic nuclei of teleost fish and neural plasticity

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. During early ontogeny, the serotonergic neurons in the brain stem of the three-spined stickleback shows a temporal and spatial developmental pattern that closely resembles that of amniotes.

2. However, in the adult fish, only the midline nuclei of the rostral group (dorsal and median raphe nuclei) and the dorsal lateral tegmental nucleus are consistently serotonin-immunoreactive (5-HTir), whereas the groups of the upper and lower rhombencephalon (raphe pontis, raphe magnus, and raphe pallidus/obscurus nuclei) are variable and, when present, contain relatively small numbers of 5-HTir neurons.

3. Using specific antisera against tryptophan 5-hydroxylase and aromaticl-amino acid decarboxylase, we have shown that the lateral B9 group and the groups of the upper and lower rhombencephalon are consistently present in adult sticklebacks. The results are discussed in relation to other known instances of neurotransmitter plasticity or transient neurotransmitter expression in teleost fish.

4. While there are several instances of transient expression of neurotransmitter markers by discrete neuronal populations, there is so far no evidence of changes from one neurotransmitter phenotype to another in the brain of teleost fish. However, there are indications of plasticity of expression of catecholamines and indoleamines, and their respective synthesizing enzymes, as reflected in age-dependent changes and variation between individuals of different physiological status.

5. As the brain grows continuously in teleost fish, and new neurons are added from proliferative regions, synaptic connections may be expected to undergo remodeling in all brain regions throughout life. Thus, the teleostean brain may be considered a suitable model for experimental studies of different aspects of neural plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batten, T. F. C., Berry, P. A., Maqbool, A., Moons, L., and Vandesande, F. (1993). Immunolocalization of catecholamine enzymes, dopamine and L-Dopa in the brain ofDicentrarchus labrax (Teleostei).Brain Res. Bull. 31:233–252.

    Google Scholar 

  • Bauchot, R., Diague, J. M., and Ridet, J. (1979). Posthatching growth and allometry of the teleost brain.J. Hirnforsch. 20:29–34.

    Google Scholar 

  • Beltramo, M., Krieger, M., Tillet, Y., Thibault, J., Calas, A., Mazzi, V., and Franzoni, M. F. (1994). Immunolocalization of aromatic L-amino acid decarboxylase in goldfish (Carassius auratus) brain.J. Comp. Neurol. 343:209–227.

    Google Scholar 

  • Birse, S. C., and Coggeshall, R. B. (1980). Neuronal increase in the various areas of the nervous system of the guppy,Lebistes. J. Comp. Neurol. 194:291–301.

    Google Scholar 

  • Boadle-Biber, M. C. (1993). Regulation of serotonin synthesis.Prog. Biophys. Mol. Biol. 60:1–15.

    Google Scholar 

  • Bolliet, V., and Ali, M. A. (1992). Immunohistochemical study of the development of serotoninergic neurons in the brain of the brook troutSalvelinus fontinalis.Brain Behav. Evol. 40:234–249.

    Google Scholar 

  • Bolliet, V., Perreault, S., and Ali, M. A. (1994). Development of serotonergic neurons in the brain of the mackerel,Scomber scombrus. An immunohistochemical study.J. Fish Biol. 44:241–253.

    Google Scholar 

  • Cash, C. D., Vayer, Ph., Mandel, P., and Maitre, M. (1985). Tryptophan 5-hydroxylase. Rapid purification from whole rat brain and production of a specific antiserum.Eur. J. Neurochem. 149:239–245.

    Google Scholar 

  • Chiba, T., and Masuko, S. (1989). Coexistence of varying combinations of the neuropeptides with 5-hydroxytryptamine in neurons of the raphe pallidus and obscurus projecting to the spinal cord.Neurosci. Res. 7:13–23.

    Google Scholar 

  • Easter, S. S., Jr., Rusoff, A. C., and Kish, P. E. (1981). The growth and organization of the optic nerve and tract in juvenile and adult goldfish.J. Neurosci. 1:793–811.

    Google Scholar 

  • Ebbesson, L. O. E., Holmqvist, B., Östholm, T., and Ekström, P. (1992). Transient serotonin-immunoreactive neurons coincide with a critical period of neural development in coho salmon (Oncorhynchus kisutch).Cell Tissue Res. 268:389–392.

    Google Scholar 

  • Ebbesson, S. O. E., Bazer, G. T., Bailey, R. P., Reynolds, J. B., and Smith, J. E. (1987). Changes with age in total brain concentrations of biogenic amine neurotransmitters in coho salmon (Oncorhynchus kisutch Walbaum).Brain Res. 405:175–177.

    Google Scholar 

  • Ebbesson, S. O. E., Ekström, P., and Ito, H. (1988). Retinal projections change with time in sockeye salmon (Oncorhynchus nerka, Walbaum).Anat. Rec. 220:34A.

    Google Scholar 

  • Ebbesson, S. O. E., Smith, J., Co, C., and Cheek, M. (1989). Brain neurotransmitters increase during olfactory imprinting in coho salmon (Oncorhynchus kisutch) and are affected by exposure to propylthiouracil.Soc. Neurosci. Abstr. 15:1019.

    Google Scholar 

  • Ekström, P., and Ebbesson, S. O. E. (1989). Distribution of serotonin-immunoreactive neurons in the brain of sockeye salmon fry.J. Chem. Neuroanat. 2:201–213.

    Google Scholar 

  • Ekström, P., and Meissl, H. (1989). Signal processing in a simple vertebrate photoreceptor system: the teleost pineal organ.Physiol. Bohemoslov. 38:311–326.

    Google Scholar 

  • Ekström, P., and van Veen, Th. (1984). Distribution of 5-hydroxytryptamine (serotonin) in the brain of the teleostGasterosteus aculeatus L.J. Comp. Neurol. 226:307–320.

    Google Scholar 

  • Ekström, P., Nyberg, L., and van Veen, Th. (1985). Ontogenetic development of serotonergic neurons in the brain of a teleost, the three-spined stickleback. An immunohistochemical analysis.Dev. Brain Res. 17:209–224.

    Google Scholar 

  • Ekström, P., Honkanen, T., and Steinbusch, H. W. M. (1990). Distribution of dopamine-immunoreactive neuronal perikarya and fibres in the brain of a teleost,Gasterosteus aculeatus. Comparison with tyrosine hydroxylase- and dopamineβ-hydroxylase-immunoreactive neurons.J. Chem. Neuroanat. 3:233–260.

    Google Scholar 

  • Ekström, P., Honkanen, T. and Borg, B. (1992a). Development of tyrosine hydroxylase-, dopamine- and dopamineβ-hydroxylase-immunoreactive neurons in a teleost, the three-spined stickleback.J. Chem. Neuroanat. 5:481–501.

    Google Scholar 

  • Ekström, P., Östholm, T., and Ebbesson, S. O. E. (1992b). A morphometric study of age-related changes in serotonin-immunoreactive cell groups in the brain of the coho salmon,Oncorhynchus kisutch Walbaum.Exp. Neurol. 116:204–209.

    Google Scholar 

  • Fenwick, J. C. (1970). Brain serotonin and swimming activity in the goldfish,Carassius auratus.Comp. Biochem. Physiol. 32:803–806.

    Google Scholar 

  • Fingerman, S. W. (1976). Circadian rhythms of brain 5-hydroxytryptamine and swimming activity in the teleost,Fundulus grandis.Comp. Biochem. Physiol. 54C:49–53.

    Google Scholar 

  • Frankenhuis-van den Heuvel, T. H. M., and Nieuwenhuys, R. (1984). Distribution of serotonin-immunoreactivity in the diencephalon and mesencephalon of the trout,Salmo gairdneri. Cell bodies, fibres and terminals.Anat. Embryol. 169:193–204.

    Google Scholar 

  • Hasler, A. D., and Scholz, A. T. (1980). Olfactory imprinting and homing in salmon.Zoophysiology 14:1–134.

    Google Scholar 

  • Herregodts, P., Velkeniers, B., Ebinger, G., Michotte, Y., Vanhaelst, L., and Hooghe-Peters, E. (1990). Development of monoaminergic neurotransmitters in fetal and postnatal rat brain: analysis by HPLC with electrochemical detection.J. Neurochem. 55:774–779.

    Google Scholar 

  • Holmqvist, B. I., Östholm, T., and Ekström, P. (1994). Neuroanatomical analysis of the visual and hypophysiotrophic systems in the Atlantic salmon (Salmo salar) with emphasis on possible mediators of photoperiodic cues during parr-smolt transformation.Aquaculture 121:1–12.

    Google Scholar 

  • Johns, P. R. (1977). Growth of the adult goldfish eye. III. Source of the new retinal cells.J. Comp. Neurol. 176:343–358.

    Google Scholar 

  • Johnston, S. A., Maler, L., and Tinner, B. (1990). The distribution of serotonin in the brain ofApteronotus leptorhynchus: An immunohistochemical study.J. Chem. Neuroanat. 3:429–465.

    Google Scholar 

  • Johnston, W. L., and Glanville, N. T. (1992). Effect of feeding and fasting on plasma tryptophan and tryptophan to large neutral amino acid ratio, and on brain serotonin turnover in rainbow trout,Oncorhynchus mykiss.Fish Physiol. Biochem. 10:11–22.

    Google Scholar 

  • Joy, K. P., and Khan, I. A. (1991). Pineal-gonadal relationship in the teleostChanna punctatus (Bloch): Evidence for possible involvement of hypothalamic serotonergic system.J. Pineal Res. 11:12–22.

    Google Scholar 

  • Kah, O., and Chambolle, P. (1983). Serotonin in the brain of the goldfish,Carassius auratus. An immunocytochemical study.Cell Tissue Res. 234:319–333.

    Google Scholar 

  • Khan, I. A., and Joy, K. P. (1988). Seasonal and daily variations in hypothalamic monoamine levels and monoamine oxidase activity in the teleostChanna punctatus (Bloch).Chronobiol. Int. 5:311–316.

    Google Scholar 

  • Khan, I. A., and Joy, K. P. (1990). Effects of season, pinealectomy, and blinding, alone and in combination, on hypothalamic monoaminergic activity in the teleostChanna punctatus (Bloch).J. Pineal Res. 8:277–287.

    Google Scholar 

  • Kirsche, W. (1967). Über postembryonale Matrixzonen in Gehirn verschiedener Vertebraten und deren Beziehung zur Hirnbauplanlehre.Z. Mikrosk. Anat. Forsch. 77:313–406.

    Google Scholar 

  • Krieger, M., Tillet, Y., Gros, F., and Thibault, F. (1993). Preparation of an antiserum using a fusion protein produced by a cDNA for rat aromatic L-amino acid decarboxylase.Neurosci. Lett. 153:88–92.

    Google Scholar 

  • Landis, S. C. (1990). Target regulation of neuronal phenotype.Trends Neurosci. 13:344–350.

    Google Scholar 

  • Leyhausen, C., Kirschbaum, F., Szabo, T., and Erdelen, M. (1987). Differential growth in the brain of the weakly electric fish,Apteronotus leptorhynchus (Gymnotiformes), during ontogenesis.Brain Behav. Evol. 30:230–248.

    Google Scholar 

  • Lidov, H. G. W., and Molliver, M. E. (1982). Immunohistochemical study of the development of serotonergic neurons in the rat CNS.Brain Res. Bull. 9:559–604.

    Google Scholar 

  • Meek, J., and Joosten, H. W. J. (1989). Distribution of serotonin in the brain of the mormyrid teleostGnathonemus petersii.J. Comp. Neurol. 281:206–224.

    Google Scholar 

  • Meyer, R. L. (1978). Evidence from thymidine labeling for continuing growth of retina and tectum in juvenile goldfish.Exp. Neurol. 59:99–111.

    Google Scholar 

  • Movérus, B., Holmqvist, B., Vecino, E., Ebbesson, S. O. E., and Ekström, P. (1989). Neuropeptides and catecholamines in the serotonergic brainstem nuclei of teleost fishes.Eur. J. Neurosci. Suppl. 2:208.

    Google Scholar 

  • Nieuwenhuys, R. (1985).Chemoarchitecture of the Brain, Springer, Berlin Heidelberg, pp. 1–246.

    Google Scholar 

  • Olcese, J. M., Hall, T. R., Figueroa, H. R. and deVlaming, V. L. (1981). Pinealectomy and melatonin effects on daily variations of the hypothalamic serotonergic system in the goldfish.Comp. Biochem. Physiol. 70A:69–72.

    Google Scholar 

  • Östholm, T., and Ebbesson, S. O. E. (1989). Age-dependent changes in distribution of substance P-like immunoreactivity in coho salmon.Soc. Neurosci. Abstr. 15:126.

    Google Scholar 

  • Östholm, T., Ekström, P., and Ebbesson, S. O. E. (1992). Postsmolt change in numbers of acetylcholinesterase-positive cells in the pineal organ of the Pacific coho salmon.Cell Tissue Res. 270:281–286.

    Google Scholar 

  • Parent, A. (1981). The anatomy of serotonin-containing neurons across phylogeny. InSerotonin Neurotransmission and Behavior, (B. L. Jacobs and A. Gelperin, Eds.), MIT Press, Cambridge, MA, pp. 3–34.

    Google Scholar 

  • Park, D. H., Snyder, D. W., and Joh, T. H. (1986). Postnatal development changes of tryptophan hydroxylase activity in serotonergic cell bodies and terminals of rat brain.Brain Res. 378:183–185.

    Google Scholar 

  • Raymond, P. A. (1986). Movement of retinal terminals in goldfish optic tectum predicted by analysis of neuronal proliferation.J. Neurosci. 6:2479–2488.

    Google Scholar 

  • Raymond, P. A., and Easter, S. S., Jr. (1983). Postembryonic growth of the optic tectum in goldfish. I. Location of germinal cells and number of neurons produced.J. Neurosci. 3:1077–1091.

    Google Scholar 

  • Sloley, B. D., Cunjak, R. A., Power, G., and Downer, R. G. H. (1986). The influence of sex and spawning on levels of tryptophan, serotonin and 5-hydroxyindoleacetic acid in the brains of wild brook trout,Salvelinus fontinalis.J. Fish. Biol. 29:663–669.

    Google Scholar 

  • Steinbusch, H. W. M., and Nieuwenhuys, R. (1983). The raphe nuclei of the rat brain stem: A cytoarchitectonic and immunohistochemical study. InChemical Neuroanatomy (P. C. Emson, Ed.), Raven Press, New York, pp. 131–207.

    Google Scholar 

  • Sternberger, L. A. (1979).Immunocytochemistry, Wiley, New York.

    Google Scholar 

  • Vecino, E., Ekström, P., and Ebbesson, S. O. E. (1989). Distribution of enkephalin and serotonin immunoreactivity in the optic tectum of the coho salmon (Oncorhynchus kisutch) changes with age.Soc. Neurosci. Abstr. 15:1211.

    Google Scholar 

  • Wallace, J. A. (1985). An immunocytochemical study of the development of central serotoninergic neurons in the chick embryo.J. Comp. Neurol. 236:443–453.

    Google Scholar 

  • Wallace, J. A., and Lauder, J. M. (1983). Development of the serotonergic system in the rat embryo: An immunocytochemical study.Brain Res. Bull. 10:459–479.

    Google Scholar 

  • Weissmann, D., Belin, M. F., Aguera, M., Meunier, C., Maitre, M., Cash, C. D., Ehret, M., Mandel, P., and Pujol, J. F. (1987). Immunohistochemistry of tryptopan hydroxylase in the rat brain.Neuroscience 23:291–304.

    Google Scholar 

  • Winberg, S., and Nilsson, G. E. (1993). Time course of changes in brain serotonergic activity and brain tryptophan levels in dominant and subordinate juvenile arctic charr.J. Exp. Biol. 179:181–195.

    Google Scholar 

  • Winberg, S., Nilsson, G. E., and Olsén, K. H. (1991). Social rank and brain levels of monoamines and monoamine metabolites in Arctic charr,Salvelinus alpinus (L.).J. Comp. Physiol. 168A:241–246.

    Google Scholar 

  • Winberg, S., Carter, C. G., McCarthy, I. D., He, Z.-Y., Nilsson, G. E., and Houlihan, D. F. (1993). Feeding rank and brain serotonergic activity in rainbow troutOncorhynchus mykiss.J. Exp. Biol. 179:197–211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekström, P. Developmental changes in the brain-stem serotonergic nuclei of teleost fish and neural plasticity. Cell Mol Neurobiol 14, 381–393 (1994). https://doi.org/10.1007/BF02088718

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02088718

Key words

Navigation