Skip to main content
Log in

Effect of ionophores on the processing of theβ-amyloid precursor protein in different cell lines

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. Alzheimer's disease is characterized by the deposition in the brain of extracellular amyloid plaques and vascular deposits consisting mostly of amyloidβ-peptide (Aβ). Aβ, a polypeptide of 39–43 amino acids (M r, ∼4 kDa), is derived proteolytically from a family of proteins of 695–770 amino acids (M r, ∼110–140 kDa) calledβ-amyloid precursor protein (βAPP).

2.βAPP, an integral membrane glycoprotein, is extensively posttranslationally modified within the endoplasmic reticulum (ER) and various Golgi compartments.βAPP is cleaved by proteases in either the trans-Golgi network or the post-Golgi apparatus and then secreted as a truncated soluble form into the conditioned media of cultured cells and cerebrospinal fluid samples from human subjects.βAPP can be processed either by an antiamyloidogenic secretory pathway or by an endosomal/lysosomal pathway.

3. I studied the effect of two ionophores on the processing ofβAPP in cultured cells. Monensin and, in some cases, ammonium chloride increase the intracellular accumulation ofβAPP in several cell lines and may alter its processing. Monensin, which had the most consistent effects, also inhibited secretion ofβAPP in a differentiated (growth factor mediated) cell line. Nigericin, with greater K+ selectivity, was less able to alter the accumulation and possible processing of the protein.

4. These results suggest that the increase in the accumulation of intracellularβAPP observed after treating cells with ionophores has some specificity. The selective effect of these ionophores on the metabolism ofβAPP may provide a model system to analyze the pathways for studying maturation, secretion, and degradation ofβAPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. P., Esch, F. S., Keim, P. S., Sambamurti, K., Lieberburg, I., and Robakis, N. K. (1991). Exact cleavage site of Alzheimer amyloid precursor in neuronal PC12 cells.Neurosci. Lett. 128:126–128.

    Google Scholar 

  • Benda, P., Lightbody, J., Sato, G., Levine, L., and Sweet, W. (1968). Differentiated rat glial cell strain in tissue culture.Science 161:370.

    Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72:248–254.

    Google Scholar 

  • Buxbaum, J. D., Oishi, M., Chen, H. I., Pinkas-Kramarski, R., Jaffe, E. A., Gandy, S. E., and Greengard, P. (1992). Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimerβ/A4 amyloid protein precursor.Proc. Natl. Acad. Sci. USA 89:10075–10078.

    Google Scholar 

  • Buxbaum, J. D., Koo, E. H., and Greengard, P. (1993). Protein phosphorylation inhibits production of Alzheimer amyloidβ/A4 peptide.Proc. Natl. Acad. Sci. USA 90:9195–9198.

    Google Scholar 

  • Caporaso, G. L., Gandy, S. E., Buxbaum, J. D., and Greengard, P. (1992). Chloroquine inhibits intracellular degradation but not secretion of Alzheimer beta/A4 amyloid precursor protein.Proc. Natl. Acad. Sci. USA 89:2252–2256.

    Google Scholar 

  • Esch, F. S., Keim, P. S., Beattie, E. C., Blacher, R. W., Culwell, A. R., Oltersdorf, T., McClure, D., and Ward, P. J. (1990). Cleavage of amyloidβ-peptide during constitutive processing of its precursor.Science 248:1122–1124.

    Google Scholar 

  • Estus, S., Golde, T. E., Kunishita, T., Blades, D., Lowery, D., Eisen, M., Usiak, M., Qu, X., Tabira, T., Greenberg, B. D., and Younkin, S. G. (1992). Potentially amyloidogenic, carboxyl-terminal derivatives of the amyloid protein precursor.Science 255:726–728.

    Google Scholar 

  • Golde, T. E., Estus, S., Younkin, L. H., Selkoe, D. J., and Younkin, S. G. (1992). Processing of the amyloid protein precursor to potentially amyloidogenic derivatives.Science 255:728–730.

    Google Scholar 

  • Green, L. A., and Tischler, A. S. (1976). Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor.Proc. Natl. Acad. Sci. USA 73:2424–2428.

    Google Scholar 

  • Eskelinen, S., Huotari, V., Sormunen, R., Palovuori, R., Kok, J. W., and Lehto, V. P. (1992). Low intracellular pH induces redistribution of fodrin and instabilization of lateral walls in MDCK cells.J. Cell. Physiol. 150:122–133.

    Google Scholar 

  • Haass, C., and Selkoe, D. J. (1993). Cellular processing ofβ-amyloid precursor protein and the genesis of amyloidβ-peptide.Cell 75:1039–1042.

    Google Scholar 

  • Haass, C., Koo, E. H., Mellon, A., Hung, A. Y., and Selkoe, D. J. (1992a). Targeting of cell-surfaceβ-amyloid precursor protein to lysosomes: Alternative processing into amyloid-bearing fragments.Nature 357:500–503.

    Google Scholar 

  • Haass, C., Schlossmacher, M. G., Hung, A. Y., Vigo-Pelfrey, C., Mellon, A., Ostaszweski, B. L., Lieberbug, I., Koo, E. H., Schenk, D., Teplow, D. B., and Selkoe, D. J. (1992b). Amyloidβ-peptide is produced by cultured cells during normal metabolism.Nature 359:322–325.

    Google Scholar 

  • Hay, R., Caputo, J., Chen, T. R., Macy, M., McClintock, P., and Reid, Y. (1992).ATCC Catalogue of Cell Lines and Hybridomas, 7th ed., Rockville, MD.

  • Kang, J., Lemair, H.-G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grezeschik, K.-H., Multhaup, G., Beyreuther, K., and Muller-Hill, B. (1987). The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor.Nature 325:733–736.

    Google Scholar 

  • Kitaguchi, N., Takahashi, Y., Tokushima, Y., Shiojiri, S., and Ito, H. (1988). Novel precursor of Alzheimer's disease amyloid protein shows protease inhibitory activity.Nature 331:530–532.

    Google Scholar 

  • Kuentzel, S. L., Ali, S. M., Altman, R. A., Greenberg, B. D., and Raub, T. J. (1993). The Alzheimerβ-amyloid protein precursor/protease nexin-II is cleaved by secretase in atrans-Golgi secretory compartment in human neuroglioma cells.Biochem. J. 295:367–378.

    Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of the head of bacteriophage T4.Nature 227:680–685.

    Google Scholar 

  • Lahiri, D. K. (1993). The stability of beta-amyloid precursor protein in nine different cell types.Biochem. Mol. Biol. Int. 29:849–858.

    Google Scholar 

  • Lahiri, D. K. (1994). Reversibility of the effect of tacrine on the secretion of the beta-amyloid precursor protein in cultured cells.Neurosci. Letts. 181:149–152.

    Google Scholar 

  • Lahiri, D. K., Nall, C., and Farlow, M. R. (1992). The cholinergic agonist carbachol reduces intracellular amyloid precursor protein in PC12 and C6 cells.Biochem. Int. 28:853–860.

    Google Scholar 

  • Lahiri, D. K., Lewis, S., and Farlow, M. R. (1994). Tacrine alters the processing of beta-amyloid precursor protein in different cell lines.J. Neurosci. Res. 37:777–787.

    Google Scholar 

  • Lindquist, S. (1986). The heat-shock response.Annu. Rev. Biochem. 55: 1151–1191.

    Google Scholar 

  • Miyazaki, K., Hasegawa, M., Funahashi, K., and Umeda, M. (1993). A metalloproteinase inhibitor domain in Alzheimer amyloid protein precursor.Nature 362:839–841.

    Google Scholar 

  • Multhaup, G., Masters, C. L., and Beyreuther, K. (1993). A molecular approach to Alzheimer's disease.Biol. Chem. Hoppe-Seyler 374:1–8.

    Google Scholar 

  • Nishimoto, I., Okamoto, T., Matwuura, Y., Takahashi, S., Okamoto, T., Murayama, Y., and Ogata, E., (1993). Alzheimer amyloid protein precursor complexes with brain GTP-binding protein G0.Nature 362:75–79.

    Google Scholar 

  • Nitsch, R. M., Slack, B. E., Wurtman, R. J., and Growdon, J. H. (1992). Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylchloline receptors.Science 258:304–307.

    Google Scholar 

  • Oltersdorf, T., Fritz, L. C., Schenk, D. B., Lieberburg, I., Johnson-Wood, K. L., Beattie, E. C., Ward, P. J., Blacher, R. W., Dovey, H. F., and Sinha, S. (1989). The secreted form of the Alzheimer's amyloid precursor protein with the Kunitz domain is protease nexin-II.Nature 341:144–147.

    Google Scholar 

  • Palmert, M. R., Podlisny, M. B., Witker, D. S., Oltersdorf, T., Younkin, L. H., Selkoe, D. J., and Younkin, S. G. (1989). Theβ-amyloid protein precursor of Alzheimer disease has soluble derivatives found in human brain and cerebrospinal fluid.Proc. Natl. Acad. Sci. USA 86:6338–6342.

    Google Scholar 

  • Parsell, D. A., and Lindquist, S. (1993). The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins.Annu. Rev. Genet. 27:437–496.

    Google Scholar 

  • Ponte, P., Gonzalez-DeWhitt, P., Schilling, J., Miller, J., Hsu, D., Greenberg, B., Davis, K., Wallace, W., Lieberberg, I., Fuller, F., and Cordell, B. (1988). A new A4-amyloid mRNA contains a domain homologous to serine protease inhibitors.Nature 331:525–527.

    Google Scholar 

  • Pressman, B. C. (1976). Biological applications of ionophores.Annu. Rev. Biochem. 45:501–530.

    Google Scholar 

  • Pressman, B. C., and Fahim, M. (1982). Pharmacology and toxicology of the monovalent carboxylic ionophores.Annu. Rev. Pharmacol. Toxicol. 22:465–492.

    Google Scholar 

  • Refolo, L. M., Salton, S. R., Anderson, J. P., Mehta, P., and Robakis, N. K. (1989). Nerve and epidermal growth factors induce the release of the Alzheimer amyloid precursor from PC12 cell cultures.Biochem. Biophys. Res. Commun. 164:664–670.

    Google Scholar 

  • Sambamurti, K., Shioi, J., Anderson, J. P., Pappolla, M. A., and Robakis, N. R. (1992). Evidence for intracellular cleavage of the Alzheimer's amyloid precursor in PC 12 cells.J. Neurosci Res. 33:319–329.

    Google Scholar 

  • Schubert, D., Lacorbiere, M., Saitoh, T., and Cole, G. (1989). Characterization of an amyloid beta-precursor protein which binds heparin and contains tyrosine sulfate.Proc. Natl. Acad. Sci. USA 86:2066–2069.

    Google Scholar 

  • Selkoe, D. J. (1991). The molecular pathology of Alzheimer's disease.Neuron 6:487–498.

    Google Scholar 

  • Selkoe, D. J. (1994). Normal and abnormal biology of theβ-amyloid precursor protein.Annu. Rev. Neurosci. 17:489–517.

    Google Scholar 

  • Seubert, P., Oltersdorf, T., Lee, M. G., Barbour, R., Blomquist, C., Davis, D. L., Bryant, K., Fritz, L. C., Galasko, D., Thal, L. J., Lieberburg, I., and Schenk, D. B. (1993). Secretion ofβ-amyloid precursor protein cleaved at the amino terminus of theβ-amyloid peptide.Nature 361:260–263.

    Google Scholar 

  • Shioi, J. S., Anderson, J. P., Ripellino, J. A., and Robakis, N. K. (1992). Chondroitin sulfate proteoglycan form of the Alzheimer'sβ-amyloid precursor.J. Biol. Chem. 267:13819–13822.

    Google Scholar 

  • Shoji, M., Golde, T. E., Ghiso, J., Cheung, T. T., Estus, S., Shaffer, L. M., Cai, X.-D., McKay, D. M., Tintner, R., Frangione, B., and Younkin, S. G. (1992). Production of the Alzheimer amyloidβ-protein by normal proteolytic processing.Science 258:126–129.

    Google Scholar 

  • Sisodia, S. S. (1992). Beta amyloid precursor protein cleavage by a membrane-bound protease.Proc. Natl. Acad. Sci. USA 89:6075–6079.

    Google Scholar 

  • Sisodia, S. S., Koo, E. H., Beyreuther, K., Unterbeck, A., and Price, D. L. (1990). Evidence thatβ-amyloid protein in Alzheimer's disease is not derived by normal processing.Science 248:492–495.

    Google Scholar 

  • Slunt, H. H., Thinakaran, G., Von Koch, C., Lo, A. C., Tanzi, R. E., and Sisodia, S. S. (1994). Expression of a ubiquitous, cross-reactive homologue of the mouseβ-amyloid precursor protein (APP).J. Biol. Chem. 269:2637–2644.

    Google Scholar 

  • Strous, G. J. A. M., and Lodish, H. F. (1980). Intracellular transport of secretory and membrane proteins in hepatoma cells infected by vesicular stomatitis virus.Cell 22:709–717.

    Google Scholar 

  • Tanzi, R. E., McClatchey, A. I., Lamperti, E. D., Villa-Komaroff, L., Gusella, J. F., and Neve, R. L. (1988). Protease inhibitor domain encoded by an amyloid precursor mRNA associated with Alzheimer's disease.Nature 331:528–530.

    Google Scholar 

  • Tartakoff, A. M., and Vassalli, P. (1977). Plasma cell immunoglobulin secretion: Arrest is accomplished by alterations of the Golgi complex.J. Exp. Med. 146:1332–1345.

    Google Scholar 

  • Tartakoff, A. M., and Vassalli, P. (1978). Comparative studies of intracellular transport of secretory proteins.J. Cell Biol. 79: 694–707.

    Google Scholar 

  • Tumilowicz, J. J., Nichols, W. W., Cholon, J. J., and Greene, A. E. (1970). Definition of a continuous human cell line derived from neuroblastoma.Cancer Res. 30:2110–2118.

    Google Scholar 

  • Uchida, N., Smilowitz, H., Ledger, P. W., and Tanzer, M. L. (1980). Kinetic studies of the intracellular transport of procollagen and fibronectin in human fibroblasts: Effects of the monovalent ionophore, monensin.J. Biol. Chem. 255:8638–8644.

    Google Scholar 

  • Van Nostrand, W. E., Schmaier, A. H., Farrow, J. S., and Cunningham, D. D. (1990). Protease nexin-II (amyloid beta-protein precursor): A platelet alpha-granule protein.Science 248:745–748.

    Google Scholar 

  • Van Nostrand, W. E., Wagner, S. L., Suzuki, M., Choi, B. H., Farrow, J. S., Geddes, J. W., Cotman, C. W., and Cunningham, D. D. (1989). Protease nexin-II, a potent antichymotrypsin, shows identity to amyloid beta-protein precursor.Nature 341:546–549.

    Google Scholar 

  • Wang, R., Meschia, J. F., Cotter, R. J., and Sisodia, S. S. (1991). Secretion of theβ/A4 amylid precursor protein. Identification of a cleavage site in cultured mammalian cells.J. Biol. Chem. 266:16960–16964.

    Google Scholar 

  • Wasco, W., Bupp, K., Magendantz, M., Gusella, J. F., Tanzi, R. E., and Solomon, F. (1992). Identification of a mouse brain cDNA that encodes a protein related to Alzheimer's disease-associated amyloidβ protein precursor.Proc. Natl. Acad. Sci. USA 89:10758–10762.

    Google Scholar 

  • Wasco, W., Gurubhagavatula, S., Paradis, M., Romano, D. M., Sisodia, S. S., Hyman, B. T., Neve, R. L., and Tanzi, R. E. (1993). Isolation and characterization of APLP2 encoding a homologue of the Alzheimer's associated amyloidβ-protein precursor.Nature Genet. 5:95–99.

    Google Scholar 

  • Weidemann, A., Konig, G., Bunke, D., Fischer, P., Salbaum, J. M., Masters, C. L., and Beyreuther, K. (1989). Identification, biogenesis, and localization of precursors of Alzheimer's disease A4 amyloid protein.Cell 57:115–126.

    Google Scholar 

  • Zhong, A., Higaki, J., Murakami, K., Wang, Y., Catalano, R., Quon, D., and Cordell, B. (1994). Secretion ofβ-amyloid precursor protein involves multiple cleavage sites.J. Biol. Chem. 266:16960–16964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahiri, D.K. Effect of ionophores on the processing of theβ-amyloid precursor protein in different cell lines. Cell Mol Neurobiol 14, 297–313 (1994). https://doi.org/10.1007/BF02088713

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02088713

Key words

Navigation