Advertisement

General Relativity and Gravitation

, Volume 26, Issue 1, pp 97–101 | Cite as

A class of static perfect fluid solutions

  • Walter Simon
Article

Abstract

We consider a two-parameter family of equations of state for perfect fluids which forms the limiting case of a condition employed in a uniqueness proof of static, asymptotically flat solutions of the field equations. We find a geometric interpretation of this family and determine, for each of its members, the one-parameter family of regular spherically symmetric solutions.

Keywords

Field Equation Differential Geometry Geometric Interpretation Symmetric Solution Perfect Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lindblom, L., and Masood-ul-Alam, A. K. M. (1993). “On the Spherical Symmetry of Static Stellar Models”,Commun. Math. Phys., to appear.Google Scholar
  2. 2.
    Simon, W. (1993).Class. Quant. Grav. 10, 177.CrossRefGoogle Scholar
  3. 3.
    Buchdahl, H. A. (1964).Astrophys. J. 140, 1512.CrossRefGoogle Scholar
  4. 4.
    Lindblom, L., and Masood-ul-Alam, A. K. M. (1993). InDirections in General Relativity II: A Festschrift for Dieter Brill, B. L. Hu and T. Jacobson, eds. (Cambridge University Press, Cambridge) in press.Google Scholar
  5. 5.
    Beig, R., and Simon, W. (1991).Lett. Math. Phys. 21, 245.CrossRefGoogle Scholar
  6. 6.
    Rendall, A., Schmidt, B. (1991).Class. Quant. Grav. 8, 985.CrossRefGoogle Scholar
  7. 7.
    Lindblom, L. (1980).J. Math. Phys. 21, 1455.CrossRefGoogle Scholar
  8. 8.
    Buchdahl, H. A. (1959).Phys. Rev. 116, 1027.CrossRefGoogle Scholar
  9. 9.
    Beig, R., and Simon, W. (1992).Commun. Math. Phys. 144, 373.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Walter Simon
    • 1
  1. 1.Centre for Mathematics and its ApplicationsAustralian National UniversityCanberraAustralia

Personalised recommendations