Cellular and Molecular Neurobiology

, Volume 16, Issue 3, pp 357–382 | Cite as

Gonadal steroid modulation of neuroendocrine transduction: A transynaptic view

  • Rafael Alonso-Solís
  • Pedro Abreu
  • Ignacio López-Coviella
  • Guadalberto Hernández
  • Natalia Fajardo
  • Francisco Hernández-Díaz
  • Aniria Díaz-Cruz
  • Alex Hernández
Article

Summary

1. Steroid hormones act on neuronal communication through different mechanisms, ranging from transynaptic modulation of neurotransmitter synthesis and release to development and remodeling of synaptic circuitry. Due the wide distribution of putative brain targets for steroid hormones, acute or sustained elevations of their circulating levels may affect, simultaneously, a variety of neuronal elements. In an elementary mode of interaction, steroids are able to modulate both the synthesis and release of a neurotransmitter at a particular synapse, and the response of its target postsynaptic cells. Using two neuroendocrine transducing systems—the rat pineal gland and the GT1–7 cell line—we have examined these interactions and the following findings are discussed in this article.

2. In the rat, pineal melatonin production is partially controlled by gonadal hormones. In females, melatonin synthesis and secretion is reduced during the night of proestrus, apparently as a consequence of elevated estradiol and progesterone levels. In males, circulating testosterone seems to be necessary to maintain the amplitude of the nocturnal melatonin peak.

3. Some gonadal effects on pineal activity are exerted on its noradrenergic input, since changes in circulating steroid hormone levels are able to induce acute modifications of tyrosine hydroxylase activity in pineal sympathetic nerve terminals.

4. Gonadal steroids are also able to regulate the response of pineal cells to adrenergic stimulation, since in vivo treatment of both male and female rats with steroid hormone blockers induces profound modifications in adrenergically-induced accumulation of cyclic AMP (cAMP) in dispersed pinealocytes.

5. Direct exposure of pineal cells from gonadectomized female and male rats to estradiol (E2) or testosterone (T), respectively, potentiates pinealocyte response to adrenergic activation. In addition, short-term (15 min) exposure to either progesterone (Pg) or progesterone coupled to bovine serum albumin (P-3-BSA) suppresses the E2-dependent potentiation of adrenergic response in female rat pinealocytes.

6. Exposure of GT1–7 cells to E2 completely blocked the norepinephrine (NE)-induced elevation of cAMP content. In E2-treated GT1–7 cells, additional exposure (15 min) to either Pg or P-3-BSA abolished E2-dependent inhibition of NE responsiveness. In addition, P-3-BSA alone increased basal cAMP levels in GT1–7 cells, regardless previous exposure to E2.

7. In conclusion, there are evidences, both from the current literature and from the present results, supporting the view that in some neuroendocrine systems gonadal hormones modulate neurotransmission by acting, simultaneously, at pre- and postsynaptic sites. The models presented here constitute appropriate examples of this transynaptic mode of steroid action and, therefore, may offer a useful approach to investigate steroid hormone actions on the brain.

Key words

pineal gland GT1–7 cells norepinephrine tyrosine hydroxylase melatonin cAMP estradiol progesterone testosterone adrenergic receptors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abreu, P., Santana, C., Hernández, G., Calzadilla, C. H., and Alonso, R. (1987). Day-night rhythm of rat pineal tyrosine hydroxylase activity as determined by high-performance liquid chromatography with amperometric detection.J. Neurochem. 48665–668.PubMedGoogle Scholar
  2. Alonso, R., Abreu, P., and Fajardo, N. (1993). Steroid influences on pineal melatonin production. In Yu, H.-S., and Reiter, R. J. (eds.),Melatonin. Biosynthesis, Physiological Effects, and Clinical Applications CRC Press, Boca Raton, FL, pp. 73–105.Google Scholar
  3. Arnold, A. P., and Breedlove, S. M. (1985). Organizational and activational effects of sex steroids on brain and behavior: A reanalysis.Hormones Behav. 19469–498.Google Scholar
  4. Barraclough, C. A., and Wise, P. M. (1982). The role of catecholamines in the regulation of pituitary luteinizing hormone and follicle-stimulating hormone secretion.Endocrine Rev. 391–119.Google Scholar
  5. Beato, M. (1989). Gene regulation by steroid hormones.Cell 56335–344.PubMedGoogle Scholar
  6. Blum, M., McEwen, B. S., and Roberts, J. L. (1987). Transcriptional analysis of tyrosine hydroxylase gene expression in the tuberoinfundibular dopaminergic neurons of the rat arcuate nucleus after estrogen treatment.J. Biol. Chem. 262817–821.PubMedGoogle Scholar
  7. Brownstein, M., and Axelrod, J. (1974). Pineal gland: 24 hour rhythm in norepinephrine turnover.Science 148163–165.Google Scholar
  8. Brzezinski, A., Lynch, H. J., Seibel, M. M., Deng, M. H., and Nader, T. M. (1988). The circadian rhythm of plasma melatonin during the normal menstrual cycle and in amenorrheic women.J. Clin. Endocrinol. Metab. 66891–895.PubMedGoogle Scholar
  9. Buda, M., and Klein, D. C. (1978). Suspension culture of pinealocytes: Regulation of N-acetyltransferase activity.Endocrinology 1031483–1493.PubMedGoogle Scholar
  10. Cardinali, D. P. (1979). Nuclear receptor estrogen complex in the pineal gland. Modulation by sympathetic nerves.Neuroendocrinology 24333–346.Google Scholar
  11. Cardinali, D. P., Nagle, C. A., and Rosner, J. M. (1974). Metabolic fate of androgens in the pineal organ: Uptake, binding to cytoplasmic proteins and conversion of testosterone into 5Ó-reduced metabolites.Endocrinology 95179–187.PubMedGoogle Scholar
  12. Cardinali, D. P., Vacas, M. I., and Gejman, P. V. (1981). The sympathetic superior cervical ganglia as peripheral neuroendocrine centers.J. Neural Trans. 521–21.Google Scholar
  13. Cardinali, D. P., Ritta, M. N., and Gejman, P. V. (1982). Norepinephrine stimulates testosterone aromatization and inhibits 5Ó reduction via ß-adrenoceptors in rat pineal gland.Mol. Cell. Endocrinol. 28199–209.PubMedGoogle Scholar
  14. Cardinali, D., Vacas, M. I., Ritta, M. N., and Gejman, P. V. (1983). Neurotransmitter-controlled steroid hormone receptors in the central nervous system.Neurochem. Int. 5185–192.Google Scholar
  15. Cardinali, D. P., Vacas, M. I., and Rosenstein, R. E. (1987). Multifactorial control of pineal melatonin synthesis: An analysis through binding sites. In Reiter, R. J., and Fraschini, F. (Eds.),Advances in Pineal Research, Vol. 2 John Libbey, London, pp. 51–59.Google Scholar
  16. Cesnjaj, M., Krsmanovic, L. Z., Catt, K. J., and Stojilkovic, S. S. (1993). Autocrine induction of c-fos expression in GT1 neuronal cells by gonadotropin-releasing hormone.Endocrinology 1333042–3045.PubMedGoogle Scholar
  17. Chan, Y. S., Cheung, Y. M., and Pang, S. F. (1991). Rhythmic release pattern of pineal melatonin in rodents.Neuroendocrinology 53 (Suppl. 1):69–67.PubMedGoogle Scholar
  18. Chomcynski, P., and Sacchi, N. (1986). Single-step method of RNA isolation by acid guanidium thiocyanate-phenolchloroform extraction.Anal. Biochem. 162156–159.Google Scholar
  19. Dluzen, D. E., and Ramirez, V. D. (1989). Progesterone effects upon dopamine release from the corpus striatum in female rats. I. Evidence for interneuronal control.Brain Res. 476332–337.PubMedGoogle Scholar
  20. Drouva, S. V., Laplante, E., and Kordon, C. (1983). Effects of ovarian steroids onin vitro release of LHRH from mediobasal hypothalamus.Neuroendocrinology 37336–341.PubMedGoogle Scholar
  21. Etgen, A. M., Ungar, S., and Pettiti, N. (1992). Estradiol and progesterone modulation of norepinephrine neurotransmission: Implications for the regulation of female reproductive behavior.J. Neuroendocrinol. 4255–271.Google Scholar
  22. Evans, R. (1988). The steroid and thyroid hormone receptor superfamily.Science 240889–895.PubMedGoogle Scholar
  23. Findell, P. R., Wong, K. H., Jackman, J. K., and Daniels, D. V. (1993). ß1-Adrenergic and dopamine (D1)-receptors coupled to adenylyl cyclase activation in GT1 gonadotropin-releasing hormone meuroscretory cells.Endocrinology 132682–688.PubMedGoogle Scholar
  24. Fink, G. (1988). The G. W. Harris Lecture. Steroid control of brain and pituitary function.Q. J. Exp. Physiol. 73257–293.PubMedGoogle Scholar
  25. Fink, G. (1994). Molecular principles from neuroendocrine models: Steroid control of central neurotransmission. In Bloom, F. (Ed.),Neuroscience: From the Molecular to the Cognitive, Progress in Brain Research, Vol 110 Elsevier, Amsterdam, pp. 139–147.Google Scholar
  26. Fink, G., Rosei, R., and Thomson, E. (1991). Steroid actions on hypothalamic neurons with special reference to estrogen control of luteinizing hormone-releasing biosynthesis and release. In Fuxe, K., and Agnati, L. F. (Eds.),Volume Transmission in the Brain: Novel Mechanisms for Neural Transmission Raven Press, New York, pp. 195–211.Google Scholar
  27. Fox, S. R., Harlan, R. E., Shivers, B. D., and Pfaff, D. W. (1990). Chemical characterization of neuroendocrine targets for progesterone in the female rat brain and pituitary.Neuroendocrinology 51276–283.PubMedGoogle Scholar
  28. Gaytan, F., Bellido, C., Aceitero, J., Aguilar, E., and Sánchez-Criado, J. E. (1990). Leyding cell involvement in the paracrine regulation of mast cells in the testicular interstititum of the rat.Biol. Reprod. 43665–671.PubMedGoogle Scholar
  29. Grima, B., Lamoroux, A., Blanot, F., Faucon Biguet, N., and Mallet, J. (1985).Proc. Natl. Acad. Sci. USA 82617–621.PubMedGoogle Scholar
  30. Hadcock, J. R., and Malbon, C. C. (1991). Regulation of receptor expression by agonists: Transcriptional and post-transcriptional controls.TINS 14242–247.PubMedGoogle Scholar
  31. Hamill, R. W., Earley, C. J., and Guernsey, L. A. (1984). Hormonal regulation of adult sympathetic neurons: The effects of castration on tyrosine hydroxylase activity.Brain Res. 299331–337.PubMedGoogle Scholar
  32. Harper, M. J. K., and Walpole, A. L. (1967). A new derivative of triphenylethylene: Effects on implantation and mode of action in rats.J. Reprod. Fertil. 13101–119.PubMedGoogle Scholar
  33. Harrelson, A., and McEwen, B. S. (1987). Gonadal steroid modulation of neurotransmitter-stimulated cAMP accumulation in the hippocamous of the rat.Brain Res. 40489–94.PubMedGoogle Scholar
  34. Hernández, G., Abreu, P., Alonso, R., Santa, C., Moujir, F., and Calzadilla, C. H. (1990a). Castration reduces the nocturnal rise of pineal melatonin levels in the male rat by impairing its noradrenergic input.J. Neuroendocrinol. 2777–782.Google Scholar
  35. Hernández, G., Abreu, P., Alonso, R., and Calzadilla, C. H. (1990b). Determination of pineal melatonin by high-performance liquid chromatography with electrochemical detection: Application for rhythm studies and tissue explants.J. Pineal Res. 811–19.PubMedGoogle Scholar
  36. Hernández, G., Bello, A. R., González-Coviella, I. L., Abreu, P., Fajardo, N., Reiter, R. J., Hernández, A., and Alonso, R. (1994). Tyrosine hydroxylase activity in peripherally denervated rat pineal gland.Neurosci. Lett. 177:131–134.PubMedGoogle Scholar
  37. Ho, A. K., and Klein, D. C. (1987). Phosphatidylinositol phosphodiesterase (phospholipase C) activity in the pineal gland: characterization and photoneural regulation.J. Neurochem. 481933–1038.Google Scholar
  38. Hoffman, G. E., Lee, W.-S., Attardi, B., Yann, V., and Fitzsimons, M. D. (1990). Luteinizing hormone-releasing hormone neurons express c-fos antigen after steroid activation.Endocrinology 1261736–1741.PubMedGoogle Scholar
  39. Hruska, R. E. (1986). Elevation of striatal dopamine receptors by estrogen: dose and time studies.J. Neurochem. 471908–1915.PubMedGoogle Scholar
  40. Joell, M., and De Kloet, R. (1991). Control of neuronal excitability by corticosteroid hormones.TINS 1525–30.Google Scholar
  41. Jones, K. J., and Pfaff, D. W. (1991). Emerging tenets in the mechanism of gonadal steroid action on hypothalamic neurons. In Motta, M. (ed.),Brain Endocrinology Raven Press, New York, pp. 153–175.Google Scholar
  42. Kim, K., and Ramírez, V. D. (1985). In vitro luteinizing hormone releasing hormone release from superfused rat hypothalami: Site of action of progesterone and effect of estrogen priming.Endocrinology 116252–258.PubMedGoogle Scholar
  43. Kim, K., Lee, B. J., Cho, B. N., Kang, S. S., Choi, W. S., Park, S. D., Lee, C. D., Cho, W. K., and Wuttke, W. (1994). Blockade of noradrenergic neurotransmission with diethyldithiocarbamic acid decreases the mRNA levels of gonadotropin-releasing hormone in the hypothalamus of ovariectomized, steroid-treated prepubertal rats.Neuroendocrinology 59539–544.PubMedGoogle Scholar
  44. Klein, D. C., Sugden, D., and Weller, J. L. (1983). Postsynaptic α-adrenergic receptor potentiates β-adrenergic stimulation of pineal serotonin N-acetyltransferase.Proc. Natl. Acad. Sci. USA 80599–603.PubMedGoogle Scholar
  45. Kordon, C., Drouva, S. V., Martínez de la Rscalera, G., and Wiener, R. (1994). Role of classic and peptide neuromediators in the neuroendocrine regulation of luteinizing hormone and prolactin. In Knobil, E., Neill, E.,et al. (eds.),The Physiology of Reproduction Raven Press, New York, Vol. I, pp. 1621–1681.Google Scholar
  46. Krsmanovic, L. Z., Stojilkovic, S. S., Merelli, F., Dufour, S. M., Virmani, M. A., and Catt, K. J. (1992). Calcium signaling and episodic secretion of gonadotropin-releasing hormone in hypothalamic neurons.Proc. Natl. Acad. Sci. USA 898462–8466.PubMedGoogle Scholar
  47. Kukstas, L. A., Domec, C., Bascles, L., Bonnet, J., Verrier, D., Israel, J.-M., and Vincent, j.-D. (1991). Different expression of the two dopaminergic D2 receptors, D2415 and D2444, in two types of lactotroph, each characterized by their response to dopamine, and modification of expression by sex steroids.Endocrinology 1291101–1102.PubMedGoogle Scholar
  48. Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of the head of bacteriophate T4.Nature 227680–685.PubMedGoogle Scholar
  49. Lee, W.-S., Smith, S., and Hoffman, G. E. (1990). Progesterone enhances the surge of luteinizing hormone by increasing the activation of luteinizing hormone-releasing hormone neurons.Endocrinology 1272604–2606.PubMedGoogle Scholar
  50. Levine, J. E., and Ramírez, V. D. (1980).In vivo release of luteinizing hormone-releasing hormone estimated with push-pull cannulae from the mediobasal hypothalami of ovariectomized, steroid primed rats.Endocrinology 1071782–1790.PubMedGoogle Scholar
  51. Maus, M., Bertrand, P., Drouva, S., Rasolonjanahary, Kordon, C., Glowinski, J., Premont, J., and Enjalbert, A. (1989). Differential modulation of D1 and D2 dopamine-sensitive adenylate cyclases by 17β-estradiol in cultured striatal neurons and anterior pituitary cells.J. Neurochem. 52410–418.PubMedGoogle Scholar
  52. Martínez de la Escalera, G., Choi, A. L. H., and Weiner, R. I. (1992a). Generation and synchronization of gonadotropin-releasing hormone (GnRH) pulses: Intrinsic properties of the GT1-1 GnRH neuronal cell line.Proc. Natl. Acad. Sci. USA 891852–1855.PubMedGoogle Scholar
  53. Martínez de la Escalera, G., Gallo, F., Choi, A. L. H., and Weiner, R. I. (1992b). Beta1-adrenergic regulation of the GT1 GnRH neuronal cell lines: Stimulation of GnRH release via receptors positively coupled to adenylate cyclase.Endocrinology 1311397–1402.PubMedGoogle Scholar
  54. Martínez de la Escalera, G., Gallo, F., Choi, A. L. H., and Weiner, R. I. (1992c). Dopaminergic regulation of the GT1 gonadotropin-releasing hormone (GnRH) neuronal cell lines: stimulation of GnRH release via D1-receptors positively coupled to adenylate cyclase.Endocrinology 1312965–2971.PubMedGoogle Scholar
  55. Martínez de la Escalera, G., Choi, A. L. H., and Weiner, R. I. (1994). Biphastic regulation of GnRH secretion in GT1 cell lines.Neuroendocrinology 59420–425.PubMedGoogle Scholar
  56. McEwen, B. S. (1991). Non-genomic and genomic effects of steroids on neural activity.TIPS 12141–147.PubMedGoogle Scholar
  57. McEwan, B. S., and Woolley, C. S. (1994). Estradoil and progesterone regulate neuronal structure and synaptic connectivity in adult as well as developing brain.Exp. Geront. 29431–436.Google Scholar
  58. McEwen, B. S., Jones, R., and Pfaff, D. (1987). Hormonal control of sexual behaviour in the female rat: Molecular, cellular and neurochemical studies.Biol. Reprod. 3637–45.PubMedGoogle Scholar
  59. Mellon, P. L., Windle, J. J., Goldsmith, P. C., Padula, Roberts, J. L., and Weiner, R. I. (1990). Immortalization of hypothalamic GnRH neurons by genetically targeted tumorogenesis.Neuron 51–10.PubMedGoogle Scholar
  60. Moujir, F., Bordón, R., Santana, C., Hernández, G., Abreu, P., and Alonso, R. (1990). Ovarian steroids block the isoproterenol-induced elevation of pineal melatonin production in female rats.Neurosci. Lett. 11912–14.PubMedGoogle Scholar
  61. Moyer, M. L., Borror, K. C., Bona, B. J., De Franco, D. B., and Nordeen, S. K. (1993). Modulation of cell signaling pathways can enhance or impair glucocorticoid-induced gene expression without altering the state of receptor phosphorylation.J. Biol. Chem. 26822,933–22,940.Google Scholar
  62. Nagle, C. A., Cardinali, D. P., and Rosner, J. M. (1974). Effects of castration and testosterone administration on pineal and retinal hydroxyindol-O-methyltransferase of male rats.Neuroendocrinology 1414–23.PubMedGoogle Scholar
  63. Ozaki, Y., Wurtman, R. J., Alonso, R., and Lynch, H. J. (1978). Melatonin secretion decreases during the proestrous stage of the rat estrous cycle.Proc. Natl. Acad. Sci. USA 75531–534.PubMedGoogle Scholar
  64. Pasqualini, C., Leviel, V., Guibert, B., Faucon-Biguet, N., and Kerdelhué, B. (1991). Inhibitory actions of acute estradiol treatment on the activity and quantity of tyrosine hydroxylase in the median eminence of ovariectomized rats.J. Neuroendocrinol. 3575–580.Google Scholar
  65. Pasqualini, C., Guibert, B., and Leviel, V. (1993). Short-term inhibitory effect of estradiol on tyrosine hydroxylase activity in tuberoinfundibular dopaminergic neurons in vitro.J. Neurochem. 601707–1713.PubMedGoogle Scholar
  66. Pettiti, N., and Etgen, A. M. (1990). Alpha1-adrenoceptor augmentation of β-stimulated cAMP formation is enhanced by estrogen and reduced by progesterone in rat hypothalamic slices.J. Neurosci. 102842–2849.PubMedGoogle Scholar
  67. Pettiti, N., and Etgen, A. M. (1992). Progesterone promotes rapid desentization of alpha1-adrenergic receptor augmentation of cAMP formation in rat hypothalamic slices.Neuroendocrinology 551–8.PubMedGoogle Scholar
  68. Pfaff, D. W. (1989). Patterns of steroid hormone effects on electrical and molecular events in hypothalamic neurons.Mol. Neurobiol. 3135–154.PubMedGoogle Scholar
  69. Poletti, A., Melcangi, R. C., Negri-Cesi, P., Maggi, R., and Martini, L. (1994). Steroid binding and metabolism in the luteinizing hormone-releasing hormone-producing neuronal cell line GT1-1.Endocrinology 1352623–2628.PubMedGoogle Scholar
  70. Reiter, R. J. (1991). Pineal gland. Interface between the photoperiodic environment and the endocrine system.TEM 213–29.Google Scholar
  71. Rosie, R., Thomson, E., and Fink, G. (1990). Estrogen postiive feedback stimulates the synthesis of LHRH mRNA in neurons of the rostal diencephalon.J. Endocrinol. 124285–289.PubMedGoogle Scholar
  72. Schumacher, M. (1990). Rapid membrane effects of steroid hormones: An emerging concept in neuroendocrinology.TINS 13359–361.PubMedGoogle Scholar
  73. Schumacher, M., Coirini, H., Frankfurt, M., and McEwen, B. S. (1989). Localized actions of progesterone in hypothalamus involve oxytocin.Proc. Natl. Acad. Sci. USA 866798–6801.PubMedGoogle Scholar
  74. Schumacher, M., Coirini, H., Pfaff, D. W., and McEwen, B. S. (1990). Behavioral effects of progesterone associated with rapid modulation of oxytocin receptors.Science 250691–694.PubMedGoogle Scholar
  75. Sharkar, D. K., and Fink, G. (1979). Effects of gonadal steroids on output of luteinizing hormone releasing factor into pituitary stalk blood in the female rat.J. Endocrinol. 80303–313.PubMedGoogle Scholar
  76. Shiotani, Y., Shiosaka, S., Emson, P. C., Hilyard, C. J., Girgis, S., and MacIntyre, I. (1986). Distribution of substance P (SP)-, calcitonin gene-related peptide (CGRP)-, vasoactive intestinal polypeptide (VIP)-, and neuropeptide (NPY)-containing nerve fibers in the pineal gland of gerbils.Neurosci. Lett. 70187–192.PubMedGoogle Scholar
  77. Shivers, B. D., Harlan, R. E., Morrel, J. E., and Pfaff, D. W. (1983). Absence of oestradiol concentration in cell nuclei of LHRH-immunoreactive neurons.Nature 304345–347.PubMedGoogle Scholar
  78. Spergel, D. J., Krsmanovic, L. Z., Stojilkobic, S. S., and Catt, K. J. (1994). Glutamate modulates [Ca2+]i gonadotropin-releasing hormone secretion in immortalized hypothalamic GT1-7 neurons.Neuroendocrinology 59309–317.PubMedGoogle Scholar
  79. Stehle, J. H., Foulkes, N., Molina, C., Simonneaux, U., Pevet, P., and Sassone-Corsi, P. (1993). Adrenergic signals direct rhythmic expression of transcriptional repressor CREM in the pineal gland.Nature 365314–320.PubMedGoogle Scholar
  80. Sugden, D. (1989). Melatonin biosynthesis in the mammalian pineal gland.Experientia 45922–932.PubMedGoogle Scholar
  81. Sugden, D., Vanecek, J., Klein, D. C., Thomas, T. P., and Anderson, W. B. (1985). Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes.Nature 314359–361.PubMedGoogle Scholar
  82. Sugden, A. L., Sugden, D., and Klein, D. C. (1987). α1-Adrenoceptor activation elevates cytosolic calcium in rat pinealocytes by increasing net influx.J. Biol. Chem. 262741–745.PubMedGoogle Scholar
  83. Sutherland, R., Mester, J., and Baulieu, E. E. (1977). Tamoxifen as a “pure” anti-oestrogen in chick oviduct.Nature 267434–435.PubMedGoogle Scholar
  84. Ungar, S., Makman, M. H., Morris, S. A., and Etgen, A. M. (1993). Estrogen uncouples β-adrenergic receptor from the stimulatory guanine nucleotide-binding protein in female rat hypothalamus.Endocrinology 1332818–2826.PubMedGoogle Scholar
  85. Vacas, M. I., and Cardinali, D. P. (1979). Effect of castration and reproductive hormones on pineal serotonin metabolism in rats.Neuroendocrinology 28187–195.PubMedGoogle Scholar
  86. Vacas, M. I., Lowenstein, P. R., and Cardinali, D. P. (1979). Characterization of a cytosol progesterone receptor in bovine pineal gland.Neuroendocrinology 2484–89.Google Scholar
  87. Vanecek, J., Kosak, E., and Vorlicek, J. (1990). Daily changes in melatonin binding sites and the effect of castration.Mol. Cell. Endocrinol. 73165–170.PubMedGoogle Scholar
  88. Weiner, R. I., Wetsel, W., Goldsmith, P., Martínez de la Escalera, G., Windle, J., Padula, C., Choi, A., Megro-Vilar, A., and Mellon, P. (1992). Gonadotropin-releasing hormone cell lines. In Ganong, W. F., and Martini, L. (eds.),Frontiers in Neuroendocrinology, Vol. 13 Raven Press, New York, pp. 95–119.Google Scholar
  89. Weiss, B., and Crayton, J. (1970). Gonadal hormones as regulators of rats pineal adenylate cyclase activity.Endocrinology 87527–533.PubMedGoogle Scholar
  90. Wehling, M. (1994). Nongenomic actions of steroid hormones.TEM 5347–353.Google Scholar
  91. Wright, L. L., and Smolen, A. J. (1985). Effects of neonatal castration or treatment with dihydrotestosterone on number of neurons in the rat superior cervical sympathetic ganglion.Dev. Brain Res. 20314–316.Google Scholar
  92. Zisapel, N., and Anis, Y. (1988). Impact of circulating testosterone on iodomelatonin binding sites in the male rat brain.Mol. Cell. Endocrinol. 60119–126.PubMedGoogle Scholar
  93. Zisapel, N., Shaharabani, M., and Laudon, M. (1987). Regulation of melatonin's activity in the female rat brain by estradiol: Effects on neurotransmitter release and on iodomelatonin binding site.Neuroendocrinology 46207–216.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Rafael Alonso-Solís
    • 1
  • Pedro Abreu
    • 1
  • Ignacio López-Coviella
    • 1
  • Guadalberto Hernández
    • 1
  • Natalia Fajardo
    • 1
  • Francisco Hernández-Díaz
    • 1
  • Aniria Díaz-Cruz
    • 1
  • Alex Hernández
    • 1
  1. 1.Laboratory of Neuroendocrinology, Department of PhysiologyUniversity of La Laguna School of MedicineTenerifeSpain

Personalised recommendations