Skip to main content
Log in

Synthesis of 165-1165-1165-1-optimal linear feedback systems

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

TheH -optimization approach to feedback system design was introduced in the context of sensitivity minimization. This problem formulation yielded improper optimal controllers and did not incorporate design issues related to robustness and plant input cost. A more realistic problem formulation incorporating a weighting on the plant input was suggested earlier by the author and is pursued further in this paper. The optimization problem which results from this problem formulation is of mixed-sensitivity minimization and is solved by using tools from interpolation and approximation theory. This synthesis approach is believed to be of considerable promise for the design of linear feedback systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zames, Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses,IEEE Trans. Automat. Control,26, 301–320, April 1981.

    Article  MATH  MathSciNet  Google Scholar 

  2. G. Zames and B. A. Francis, Feedback, Minimax Sensitivity, and Optimal Robustness,IEEE Trans. Automat. Control,28, 585–601, May 1983.

    Article  MATH  MathSciNet  Google Scholar 

  3. B. C. Chang and J. B. Pearson, Optimal Disturbance Reduction in Linear Multivariable Systems,IEEE Trans. Automat. Control,29, 880–887, October 1984.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. A. Francis, J. W. Helton, and G. Zames,H -Optimal Feedback Controllers for Linear Multivariable Systems},IEEE Trans. Automat. Control,29, 888–900, October 1984.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. G. Safonov and M. S. Verma,L -Sensitivity Optimization and Hankel Approximation},IEEE Trans. Automat. Control,30, 279–280, March 1985.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Nevanlinna, Über beschränkte Funktionen, die in gegeberer Punkten vorgeschriebere Werte anrehmen,Ann. Acad. Sci. Fenn. Ser. A,13(1), 1919.

  7. G. Pick, Über die Baschränkungen analytischer Funktioren, welche durch vorgegebere Funktionswerte bewirkt werden,Math. Ann.,77, 7–23, 1916.

    Article  Google Scholar 

  8. P. H. Delsarte, Y. V. Genin, and Y. Kamp, The Nevanlinna-Pick Problem for Matrix-Valued Functions,SIAM J. Appl. Math.,36, 47–61, February 1979.

    Article  MATH  MathSciNet  Google Scholar 

  9. V. M. Adamjan, D. Z. Arov, and M. G. Krein, Analytic Properties of Schmidt Pairs for a Hankel Operator and the Generalized Schur-Takagi Problem,Math. USSR-Sb.,15(1), 31–73, 1971.

    Article  Google Scholar 

  10. V. M. Adamjan, D. Z. Arov, and M. G. Krein,Infinite Block Hankel Matrices and Related Extension Problems, AMS Translations, Vol. 111, pp. 133–156, American Mathematical Society, Providence, RI, 1978.

    Google Scholar 

  11. Z. Nehari, On Bounded Bilinear Forms,Ann. of Math.,65, 153–162, 1957.

    Article  MathSciNet  Google Scholar 

  12. D. Sarason, Generalized Interpolation inH ,Trans. Amer. Math. Soc.,127, 179–203, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. A. Ball and J. W. Helton, A Beurlix-Lax Theorem for the Lie GroupU(m, n) which Contains Most Classical Interpolation Theory,J. Operator Theory,9, 107–142, 1983.

    MATH  MathSciNet  Google Scholar 

  14. M. S. Verma, Personal Notes and Communications, Prof. R. K. Akella (1982), Prof. H. Kwakernaak (1983).

  15. M. S. Verma and E. A. Jonckheere,L -Compensation with Mixed-Sensitivity as a Broadband Matching Problem},Systems Control Lett.,4, 125–129, May 1984.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. S. Verma, Synthesis of Infinity-Norm Optimal Linear Feedback Systems, Ph.D. Dissertation, University of Southern California, 1985.

  17. H. Kwakernaak, Robustness Optimization of Linear Feedback Systems,Proc. IEEE Conf. on Decision and Control, San Antonio, TX, December 1983, pp. 618–624.

  18. H. Kwakernaak, Minimax Frequency Domain Performance and Robustness Optimization of Linear Feedback-Systems,IEEE Trans. Automat. Control,30, 994–1004, October 1985.

    Article  MATH  MathSciNet  Google Scholar 

  19. H. Kwakernaak, A Polynomial Approach to Minimax Frequency Domain Optimization of Multivariable Linear Feedback Systems,Internat. J. Control,44, 117–156, July 1986.

    Article  MATH  MathSciNet  Google Scholar 

  20. K. Glover, All Optimal Hankel-norm Approximations of Linear Multivariable Systems and TheirL -error Bounds,Internat. J. Control,39, 1116–1193, June 1984.

    Article  MathSciNet  Google Scholar 

  21. E. A. Jonckheere and M. S. Verma, A Spectral Characterization of the Optimal AchievableH -error Bounds-performance and Its Efficient Computation,Systems Control Lett.,8, 13–22, October 1986.

    Article  MATH  MathSciNet  Google Scholar 

  22. W. Rudin,Real and Complex Analysis, Second Edition, McGraw-Hill, New York, 1974.

    MATH  Google Scholar 

  23. P. Koosis,Introduction to H p Spaces, Cambridge University Press, Cambridge, 1980.

    MATH  Google Scholar 

  24. H. Helson,Lectures on Invariant Subspaces, Academic Press, New York, 1964.

    MATH  Google Scholar 

  25. S. C. Power,Hankel Operators on Hilbert Space, Pitman, London, 1982.

    MATH  Google Scholar 

  26. R. G. Douglas,Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.

    MATH  Google Scholar 

  27. D. C. Youla, J. J. Bongiorno, and H. A. Jabr, Modern Wiener-Hopf Design of Optimal Controllers—Parts I and II,IEEE Trans. Automat. Control,21, 3–13, February 1976, and 319–338, June 1976.

    Article  MATH  MathSciNet  Google Scholar 

  28. C. A. Desoer, R. W. Liu, J. Murray, and R. Saeks, Feedback System Design: The Fractional Representation Approach to Analysis and Synthesis,IEEE Trans. Automat. Control,25, 399–412, June 1980.

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Kimura, Robust Stabilizability for a Class of Transfer Functions,IEEE Trans. Automat. Control,29, 788–793, September 1984.

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Vidyasagar and H. Kimura, Robust Controllers for Uncertain Linear Multivariable Systems,Automatica,22, 85–94, January 1986.

    Article  MATH  Google Scholar 

  31. M. Vidyasagar,Control System Synthesis—A Factorization Approach, MIT Press, Cambridge, MA, 1985.

    MATH  Google Scholar 

  32. C. N. Nett, C. A. Jacobson, and M. J. Balas, A Connection Between State-Space and Doubly Coprime Fractional Representations,IEEE Trans. Automat. Control,29, 831–832, September 1984.

    Article  MATH  MathSciNet  Google Scholar 

  33. D. C. Youla, On the Factorization of Rational Matrices,IRE Trans. Inf. Theory,7, 172–189, 1961.

    Article  Google Scholar 

  34. B. C. Chang and J. B. Pearson, Inner-Outer Factorizations of Rational Matrices, Technical Report, Department of Electrical Engineering, Rice University, Houston, TX, November 1982.

    Google Scholar 

  35. H. Bart, I. Gohberg, and M. A. Kaashoek,Minimal Factorization of Matrix and Operator Functions, Birkhauser, Basel, 1979.

    MATH  Google Scholar 

  36. J. A. Ball and A. C. M. Ran, Optimal Hankel Norm Model Reductions and Wiener-Hopf Factorizations, I: The Canonical Case,SIAM J. Control Optim.,25, 362–382, March 1987.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, M.S. Synthesis of 165-1165-1165-1-optimal linear feedback systems. Math. Systems Theory 21, 165–186 (1988). https://doi.org/10.1007/BF02088012

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02088012

Keywords

Navigation