Advertisement

Mathematical Geology

, Volume 27, Issue 7, pp 831–845 | Cite as

Multifractal modeling and spatial point processes

  • Quiming Cheng
  • Frederik P. Agterberg
Article

Abstract

The multifractal model can be applied to spatial point processes. It provides new, approximately power-law type, expressions for their second-order intensity and K (r) functions. The box-counting and cluster dimensions are different but mutually interrelated according to multifractal theory. This approach is used to describe the underlying spatial structure of gold mineral occurrences in the Iskut River area, northwestern British Columbia. The box-counting and cluster dimensions for the example are estimated to be 1.335±0.077 and 1.219±0.037, respectively. The relatively strong clustering of the gold deposits is reflected by the fact that both values are considerably less than the corresponding Euclidean dimension (=2).

Key words

fractals multifractal spectrum point patterns second-order intensity box-counting clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agterberg, F. P., 1993. Calculation of the variance of mean values for blocks in regional resource evaluation studies: Nonrenewable Resources, v. 2, no. 4, p. 312–324.Google Scholar
  2. Agterberg, F. P., 1994, FORTRAN program for the analysis of point patterns with correction for edge effects: Computers & Geosciences. v. 2, no. 2, p. 229–245.Google Scholar
  3. Agterberg, F. P., Cheng, Q., and Wright, D. F., 1993, Fractal modeling of mineral deposits,in Elbrond, J., and Tang, X., eds., Application of computers and operations research in the mineral industry: Proc. 24th APCOM Symposium, v. 1: Can. Inst. Mining. Metallurgy and Petroleum Eng. (Montreal), p. 43–53.Google Scholar
  4. B. C. Minfile Map 104B, 1989, British Columbia Ministry of Energy. Mines and Petroleum Resources.Google Scholar
  5. Carlson, C. A., 1991, Spatial distribution of ore deposits. Geology, v. 19, no. 2, p. 111–114.Google Scholar
  6. Cheng, Q., 1994, Multifractal modeling and spatial analysis with GIS: gold mineral potential estimation in the Mitchell-Sulphurets area, northwestern British Columbia: unpubl. doctoral dissertation, Univ. Ottawa (Ottawa, Canada), 268 p.Google Scholar
  7. Cheng, Q., and Agterberg, F. P., 1995, Multifractal modeling and spatial statistics: submitted to Jour. Math. Geology.Google Scholar
  8. Cheng, Q., Agterberg, F. P., and Ballantyne, S. B., 1994, The separation of geochemical anomalies from background by fractal methods: Jour. Geochemical Exploration, v. 51, no. 2, p. 109–130.Google Scholar
  9. Cheng, Q., Bonham-Carter, G. F., Agterberg, F. P., and Wright, D. F., 1994, Fractal modeling in the geosciences and implementation with GIS.in Proc. 6th Canadian Conference on Geographic Information Systems (Ottawa, Canada), v. 1, p. 565–577.Google Scholar
  10. Cheng, Q., Agterberg, F. P., and Bonham-Carter, G. F., 1994, Fractal pattern integration tor mineral potential mapping,in Proc. IAMG'94. v. 1. (Mont Tremblant, Quebec, Canada) p. 73–80.Google Scholar
  11. Coleman, P. H., and Pietronero, L., 1992, The fractal structure of the universe: Physical, v. 213, no. 6, p. 311–389.Google Scholar
  12. Cressie, N. A. C., 1991, Statistics for spatial data: Wiley Interscience, New York. 900 p.Google Scholar
  13. Daley, D. J., and Vere-Jones, D., 1972, A summary of the theory of point processes.in Lewis, P. A. W., ed., Stochastic point processes: Wiley Interscience, New York, p. 299–383.Google Scholar
  14. Diggle, P. J., 1983, Statistical analysis of spatial point patterns: Academic Press, London, 148 p.Google Scholar
  15. Evertsz, C. J. G., and Mandelbrot, B. B., 1992, Multifractal measures: Appendix B.in Peitgen, H.-O., Jürgens, H., and Saupe, C., eds., Chaos and fractals: Springer Verlag, New York, p. 922–953.Google Scholar
  16. Feder, J., 1988, Fractals: Plenum Press, New York, 283 p.Google Scholar
  17. Gerrard, D. J., 1969, Competition Quotient: a new measure of the competition affecting individual forest trees: Research Bull. No. 20, Agricultural Experiment Station, Michigan State University, 74 p.Google Scholar
  18. Mandelbrot, B. B., 1983, The fractal geometry of nature: W. H. Freeman and Company, New York (updated and augmented edition), 468 p.Google Scholar
  19. Ogata, Y., and Katsura, K., 1991, Maximum likelihood estimates of the fractal dimension for random spatial patterns: Biometrika, v. 78. no. 3, p. 463–474.Google Scholar
  20. Ripley, B. D., 1976, The second-order analysis of stationary point processes: Jour. Applied Prob., v. 13, no. 8. p. 255–266.Google Scholar
  21. Ripley, B. D., 1981, Spatial statistics: Wiley, New York, 252 p.Google Scholar
  22. Ripley, B. D., 1988, Statistical inference for spatial processes: Cambridge Univ. Press, Cambridge, 148 p.Google Scholar
  23. Stoyan, D., Kendall, W. S., and Mecke, J., 1987, Stochastic geometry and its applications: Wiley, Chichester, 345 p.Google Scholar

Copyright information

© International Association for Mathematical Geology 1995

Authors and Affiliations

  • Quiming Cheng
    • 1
  • Frederik P. Agterberg
    • 2
  1. 1.Ottawa-Carleton Geoscience CentreUniversity of OttawaOttawaCanada
  2. 2.Geological Survey of CanadaOttawaCanada

Personalised recommendations