Skip to main content
Log in

Microwave cavity perturbation technique: Part III: Applications

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

The resonant cavity perturbation method as described in the preceding two parts of this series is applied to study the electrodynamical properties of different materials in the microwave and millimeter wave spectral range. We briefly discuss the relevant uncertainties which are asociated with the different measurement techniques and we find that employing the amplitude technique it is possible to measure both the width and frequency to nearly the same precision. We then demonstrate the broad range of applicability of this technique by showing results obtained on several different materials, ranging from an insulator to a superconductor. The performance limitations of this technique are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. v. Hippel,Dielectrics and Waves (Wiley, New York, 1954).

    Google Scholar 

  2. A. v. Hippel,Dielectric Materials and Applications (Technology Press M.I.T., Wiley, Cambridge/New York, 1954).

    Google Scholar 

  3. M. Sucher and J. Fox,Handbook of Microwave Measurements, Third Edition (Polytechnic Press, New York/London, 1963).

    Google Scholar 

  4. H. W. Helberg and B. Wartenberg,Z. angew. Phys. 20, 505 (1966).

    Google Scholar 

  5. M. N. Afsar and K. J. Button,Proc. IEEE 73, 131 (1985).

    Google Scholar 

  6. G. Grüner,Rev. Mod. Phys. 60, 1129 (1988).

    Google Scholar 

  7. N. F. Mott and E. A. Davis,Electronic Processes in Non-Crystalline Materials, Second Edition (Clarendon Press, Oxford, 1979).

    Google Scholar 

  8. B. I. Shklovskii and A. L. Efros,Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin/Heidelberg/New York, 1984), (Springer Series in Solid-State Science 45).

    Google Scholar 

  9. L. I. Buranov and I. F. Shchegolev,Instrum. & Exp. Tech. 14, 528 (1971).

    Google Scholar 

  10. I. F. Shchegolev,Phys. Stat. Sol. (a) 12, 9 (1972).

    Google Scholar 

  11. M. Dressel, H. W. Helberg, and D. Schweitzer,Synth. Met. 41–43, 2043 (1991), and references therein.

    Google Scholar 

  12. O. Klein, S. Donovan, M. Dressel, and G. Grüner,Int. J. Infrared and Millimeter Waves 14 (1993) (pre-preceding article).

  13. S. Donovan, O. Klein, M. Dressel, K. Holczer, and G. Grüner,Int. J. Infrared and Millimeter Waves 14 (1993) (preceding article).

  14. K. Bender, K. Dietz, H. Endres, H. W. Helberg, I. Hennig, H. J. Keller, H. W. SchÄfer, and D. Schweitzer,Mol. Cryst. Liq. Cryst. 107, 45 (1984).

    Google Scholar 

  15. M. Dressel, G. Grüner, J. P. Pouget, A. Breining, and D. Schweitzer (submitted toJ. Phys. (France) I).

  16. D. Jérome and H. J. Schulz,Adv. Phys. 31, 299 (1982).

    Google Scholar 

  17. S. Donovan, Y. Kim, L. Degiorgi, and G. Grüner,J. Phys. I. (France) 3, 1493 (1993).

    Google Scholar 

  18. S. Donovan, M. Dressel, Y. Kim, L. Degiorgi, G. Grüner, and W. Wonneberger, Submitted toPhys. Rev. B, June 1993.

  19. K. Bechgaard, C. S. Jacobsen, K. Mortensen, H. J. Pedersen, and N. Thorup,Solid State Commun. 33, 1119 (1980).

    Google Scholar 

  20. B. Gallois, J. Gaultier, C. Hauw, D. Chasseau, A. Meresse, A. Filhol, and K. Bechgaard,Mol. Cryst. Liq. Cryst. 119, 225 (1985).

    Google Scholar 

  21. R. Pott and R. Schefzyk,J. Phys. E: Sci. Instrum. 16, 444 (1983).

    Google Scholar 

  22. J. L. Ferraris and T. F. Finnegan,Solid State Commun. 18, 1169 (1976).

    Google Scholar 

  23. J. L. Miane, F. Carmona, and P. Delhaes,Phys. Stat. Sol. (b) 111, 235 (1982).

    Google Scholar 

  24. H. Urayama, H. Yamochi, G. Saito, K. Nozawa, T. Sugano, M. Kinoshita, S. Sato, K. Oshima, A. Kawamoto, and J. Tanaka,Chem. Lett., 1988.

  25. K. Holczer, D. Quinlivan, O. Klein, and G. Grüner,Solid State Commun. 76, 499 (1990).

    Google Scholar 

  26. O. Klein, K. Holczer, G. Grüner, J. J. Chang, and F. Wudl,Phys. Rev. Lett. 66, 655 (1991).

    Google Scholar 

  27. M. Dressel, O. Klein, G. Grüner, K. D. Carlson, H. H. Wang, and J. M. Williams, (to be published).

  28. D. R. Harshman, R. N. Kleiman, R. C. Haddon, S. V. Chichester-Hicks, M. L. Kaplan, L. W. Rupp, T. Pfiz, D. L. Williams, and D. B. Mitzi,Phys. Rev. Lett. 64, 1293 (1990).

    Google Scholar 

  29. M. Dressel, S. Brader, G. Grüner, K. D. Carlson, H. H. Wang, and J. M. Williams,Phys. Rev. B (in press).

  30. O. Klein, K. Holczer, and G. Grüner, (to be published).

  31. B. W. Maxfield and W. L. M. Lean,Phys. Rev. 139, A1515 (1965).

    Google Scholar 

  32. D. C. Mattis and J. Bardeen,Phys. Rev. 111, 412 (1958).

    Google Scholar 

  33. M. Tinkham,Introduction to Superconductivity (Mc Graw-Hill, New York, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dressel, M., Klein, O., Donovan, S. et al. Microwave cavity perturbation technique: Part III: Applications. Int J Infrared Milli Waves 14, 2489–2517 (1993). https://doi.org/10.1007/BF02086218

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02086218

Keywords

Navigation