Skip to main content
Log in

Microwave cavity perturbation technique: Part I: Principles

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

This report reviews the analysis used to extract the complex conductivity of a compound from a microwave cavity perturbation measurement. We intend to present a generalized treatment valid for any spheroidally shaped sample of arbitrary conductivity which is placed at either the electric or magnetic field antinode of the cavity. To begin with, we establish the relationship between the measured parameters and the conductivity for a spherical sample. Next, we extend these results to the case of spheroids; and for the first time, we cover all different configurations that one can possibly use to study an arbitrary conducting sample inside a cavity: in particular, all possible orientations of the sample with respect to the applied field are solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. G. Beljers,Physica 14, 629 (1949).

    Google Scholar 

  2. J. G. Linhart, I. M. Templeton, and R. Dunsmuir,Brit. J. Appl. Phys. 7, 36 (1956).

    Google Scholar 

  3. L. D. Landau and E. M. Lifschitz,Electrodynamics of Continuous Media (Pergamon, Oxford, 1984).

    Google Scholar 

  4. K. S. Champlin and R. R. Krongard,IRE Trans. Microwave Theory Techn. MIT-9, 545 (1961).

    Google Scholar 

  5. M. E. Brodwin and M. K. Parsons,J. Appl. Phys. 36, 494 (1965).

    Google Scholar 

  6. L. I. Buranov and I. F. Shchegolev,Instrum. & Exp. Tech. 14, 528 (1971).

    Google Scholar 

  7. M. Cohen, S. K. Khanna, W. J. Gunning, A. F. Garito, and A. J. Heeger,Solid State Commun. 17, 367 (1975).

    Google Scholar 

  8. N. P. Ong,J. Appl. Phys. 48, 2935 (1977).

    Google Scholar 

  9. S. Donovan, O. Klein, M. Dressel, K. Holczer, and G. Grüner,Int. J. Infrared and Millimeter Waves 14 (1993) (subsequent article).

  10. M. Dressel, S. Donovan, O. Klein, and G. Grüner,Int. J. Infrared and Millimeter Waves 14 (1993) (sub-subsequent article).

  11. L. D. Landau and E. M. Lifschitz,Statistical Physics (Pergamon, Oxford, 1984).

    Google Scholar 

  12. J. D. Jackson,Classical Electrodynamics (John Wiley & Sons, New York, 1975).

    Google Scholar 

  13. R. I. Joseph and E. Schlömann,J. Appl. Phys. 36, 1579 (1965).

    Google Scholar 

  14. J. A. Osborn,Phys. Rev. 67, 351 (1945).

    Google Scholar 

  15. A. B. Pippard,Proc. R. Soc. Lond. A A216, 547 (1953).

    Google Scholar 

  16. G. E. H. Reuter and E. H. Sondheimer,Proc. R. Soc. Lond. A 195, 336 (1948).

    Google Scholar 

  17. C. H. Papas,J. Appl. Phys. 25, 1552 (1954).

    Google Scholar 

  18. R. W. Morse and H. V. Bohm,Phys. Rev. 108, 1094 (1957).

    Google Scholar 

  19. J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi,Electromagnetic and Acoustic Scattering by Simple Shapes (Hemisphere, New York, 1987).

    Google Scholar 

  20. H. W. Helberg and B. Wartenberg,Z. angew. Phys. 20, 505 (1966).

    Google Scholar 

  21. F. Wooten,Optical Properties of Solids (Academic Press, San Diego, 1972).

    Google Scholar 

  22. G. Arfken,Mathematical Methods for Physicists (Academic Press, New York, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, O., Donovan, S., Dressel, M. et al. Microwave cavity perturbation technique: Part I: Principles. Int J Infrared Milli Waves 14, 2423–2457 (1993). https://doi.org/10.1007/BF02086216

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02086216

Keywords

Navigation