Advertisement

Pharmaceutisch Weekblad

, Volume 8, Issue 2, pp 145–150 | Cite as

Studies on tableting properties of lactose

Part III. The consolidation behaviour of sieve fractions of crystalline α-lactose monohydrate
  • A. H. De Boer
  • H. Vromans
  • C. F. Leur
  • G. K. Bolhuis
  • K. D. Kussendrager
  • H. Bosch
Original Articles

Abstract

The consolidation and compaction behaviour of sieve fractions of crystalline α-lactose monohydrate were studied. From mercury porosimetry measurements tablet pore surface areas were derived. At a certain compaction load it appeared that tablets compressed from small particles were generally stronger and showed a larger surface area than compacts prepared from coarse sieve fractions. By plotting compact strength against pore surface area, a unique linear relationship was obtained. From these results it can be concluded that the actual tablet surface area, being a function of both the initial particle size and applied compaction pressure, is responsible for the compact strength.

Key words

Compaction Consolidation Crushing strength Fragmentation Lactose Particle size Porosity Tablets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kawakita K, Lüdde KH. Some considerations on powder compression equations. Powder Tech 1970/71; 4:61–8.CrossRefGoogle Scholar
  2. 2.
    Butcher AE, Newton JM, Fell JT. Tensile failure planes of powder compacts. Powder Tech 1974;9:57–9.CrossRefGoogle Scholar
  3. 3.
    Carless JE, Sheak A. Changes in particle size distribution during tableting of sulphathiazole powder. J Pharm Pharmacol 1976;28:17–22.PubMedGoogle Scholar
  4. 4.
    Khan KA, Rhodes CT. Effect of compaction on particle size. J Pharm Sci 1975;64:444–7.PubMedGoogle Scholar
  5. 5.
    Alderborn G, Duberg M, Nyström C. Studies on direct compression of tablets, X. Measurement of tablet, surface area by permeametry. Powder Tech 1985;41: 49–56.CrossRefGoogle Scholar
  6. 6.
    Vromans H, De Boer AH, Bolhuis GK, Lerk CF, Kussendrager KD, Bosch H. Studies on tableting properties of lactose. Part II. Consolidation and compaction of different types of crystalline lactose. Pharm Weekbl [Sci] 1985;57:186–93.Google Scholar
  7. 7.
    Duberg M, Nyström C. Studies on direct compression of tablets, VI. Evaluation of methods for the estimation of particle fragmentation during compaction. Acta Pharm Suec 1982;19:421–36.PubMedGoogle Scholar
  8. 8.
    Alderborn G, Nyström C. Studies on direct compression of tablets, IV. The effect of particle size on the mechanical strength of tablets. Acta Pharm Suec 1982;19: 381–90.PubMedGoogle Scholar
  9. 9.
    De Boer AH, Bolhuis GK, Lerk CF. Bonding characteristics by scanning electron microscopy of powders mixed with magnesium stearate. Powder Tech 1978;20:75–82.CrossRefGoogle Scholar
  10. 10.
    Rue PJ, Rees JE. Limitations of the Heckel relation for predicting powder compaction mechanisms. J Pharm Pharmacol 1978;30:642–3.PubMedGoogle Scholar
  11. 11.
    Sheikh-Salem M, Fell JT. Compaction characteristics of mixtures of materials with dissimilar compaction mechanisms. Int J Pharm Tech Prod Manufac 1981;2: 19–22.Google Scholar
  12. 12.
    Sheikh-Salem M, Fell JT. The tensile strength of tablets of lactose, sodium chloride, and their mixtures. Acta Pharm Suec 1982;19:391–6.PubMedGoogle Scholar
  13. 13.
    Shotton E, Ganderton D. The strength of compressed tablets, III. The relation of particle size, bonding and capping in tablets of sodium chloride, aspirin and hexamine. J Pharm Pharmacol 1961;13:144T-52T.Google Scholar
  14. 14.
    Hüttenrauch R. Über den Mechanismus des Korngrösseneffekts in der Tablettierung. Pharmazie 1977;32: 130–1.Google Scholar
  15. 15.
    Kitamori N, Makino T. Effect of drug content and drug particle size on the change in particle size during tablet compression. J Pharm Pharmacol 1979;31:505–7.PubMedGoogle Scholar
  16. 16.
    Hersey JA, Rees JE, Cole ET. Density changes in lactose tablets. J Pharm Sci 1973;62:2060.PubMedGoogle Scholar
  17. 17.
    McKenna A, McCafferty DF. Effect of particle size on the compaction mechanism and tensile strength of tablets. J Pharm Pharmacol 1982;34:347–51.PubMedGoogle Scholar
  18. 18.
    Hersey JA, Bayraktar G, Shotton E. The effect of particle size on the strength of sodium chloride tablets. J Pharm Pharmacol 1907;19:24S-30S.Google Scholar
  19. 19.
    Alpar O, Hersey JA, Shotton E. The compression properties of lactose. J Pharm Pharmacol 1970;22:1S-7S.Google Scholar
  20. 20.
    Vromans H, De Boer AH, Bolhuis GK, Lerk CF, Kussendrager KD. Studies on tableting properties of lactose. Part I. The effect of initial particle size on binding properties and dehydration characteristics of lactose. Acta Pharm Suec 1985;22:163–72.PubMedGoogle Scholar
  21. 21.
    Alderborn G, Pasanen K, Nyström C. Studies on direct compression of tablets, XI. Characterization of particle fragmentation during compaction by permeametry measurements of tablets. Int J Pharm 1985;23:79–86.CrossRefGoogle Scholar
  22. 22.
    Fell JT, Newton JM. Effect of particle size and speed of compaction on density changes in tablets of crystalline and spray-dried lactose. J Pharm Sci 1971;60:1866–9.PubMedGoogle Scholar
  23. 23.
    Orowan E. Fracture and strength of solids. Rep Progr Physiol 1949;12:185–232.CrossRefGoogle Scholar

Copyright information

© Bohn, Scheltema & Holkema 1986

Authors and Affiliations

  • A. H. De Boer
    • 1
  • H. Vromans
    • 1
  • C. F. Leur
    • 1
  • G. K. Bolhuis
    • 1
  • K. D. Kussendrager
    • 2
  • H. Bosch
    • 3
  1. 1.Laboratory for Pharmaceutical Technology and DispensingState University of GroningenAW GroningenThe Netherlands
  2. 2.DMVBA VeghelThe Netherlands
  3. 3.Department of Chemical TechnologyTwente University of TechnologyAE EnschedeThe Netherlands

Personalised recommendations