Skip to main content
Log in

Stability of non-aqueous dispersions

Part 5. Theoretical predictions for dispersions in hydrocarbon media

  • Originalarbeiten
  • Kolloide
  • Published:
Kolloid-Zeitschrift und Zeitschrift für Polymere Aims and scope Submit manuscript

Summary

Theoretical values of the magnitude and location of potential energy maxima, of stability ratio and of half-life for colloidal dispersions in hydrocarbon media have been computed from the DLVO theory of colloid stability for spherical particles of radii 200–10,000 Å, and for a range of surface potential (5–80 mV) andHamaker constant (5×10−13−1×10−11 erg). The stability relationships show a marked dependence on particle size but are relatively insensitive to the value of theHamaker constant. The results may with some confidence be used to predict the stability of a dispersion in a hydrocarbon medium.

Zusammenfassung

Die Maxima der potentiellen Energie, die Stabilitätsverhältnisse und die Halbwertszeiten von kolloiden Dispersionen in Kohlenwasserstoffen wurden nach der Theorie vonDerjaguin, Landau, Verwey undOverbeek für kugelige Teilchen mit Radien von 200 bis 10000 Å und für Oberflächenpotentiale von 5 bis 80 mV berechnet. Für dieHamaker-Konstante wurden Werte von 5×10−13 bis 1×10−11 eingesetzt. Die Stabilität zeigt eine deutliche Abhängigkeit von der Partikelgröße, wird aber von der Größe derHamaker-Konstanten nur wenig beeinflußt.

Die Resultate können zu Voraussagen über die Stabilität von Dispersionen in Kohlenwasserstoffen herangezogen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koelmans, H. andJ. Th. G. Overbeek, Disc. Faraday Soc.18, 52 (1954).

    Google Scholar 

  2. McGown, D. N. L., G. D. Parfitt andE. Willis, J. Colloid Sci.20, 650 (1965).

    Google Scholar 

  3. Derjaguin, B., Trans. Faraday Soc.36, 203 (1940).

    Google Scholar 

  4. Verwey, E. J. W. andJ. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Amsterdam 1948).

  5. Lewis, K. E. andG. D. Parfitt, Trans. Faraday Soc.62, 1652 (1966).

    Google Scholar 

  6. McGown, D. N. L. andG. D. Parfitt, Disc. Faraday Soc.42, 225 (1966).

    Google Scholar 

  7. Hamaker, H. C., Physica4, 1058 (1937).

    Google Scholar 

  8. Overbeek, J. Th. G., Colloid Science, Vol. 1., ed.Kruyt, p. 271 (Amsterdam 1952).

  9. Ref. 4Verwey, E. J. W. andJ. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Amsterdam 1948) p. 146.

  10. Ref. 4Verwey, E. J. W. andJ. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Amsterdam 1948) p. 144.

  11. McGown, D. N. L. andG. D. Parfitt, J. Phys. Chem.71, 449 (1967).

    Google Scholar 

  12. Ref. 4Verwey, E. J. W. andJ. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Amsterdam 1948) p. 166.

  13. Ref. 8Overbeek, J. Th. G., Colloid Science, Vol. 1., ed.Kruyt, p. 285. (Amsterdam 1952).

  14. Ref. 4Verwey, E. J. W. andJ. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Amsterdam 1948). p. 155.

  15. Koelmans, H., Philips Research Reports10, 161 (1955).

    Google Scholar 

  16. Müller, H., Kolloid Chem. Beih.26, 257 (Darmstadt 1928).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 5 figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGown, D.N.L., Parfitt, G.D. Stability of non-aqueous dispersions. Kolloid-Z.u.Z.Polymere 219, 48–51 (1967). https://doi.org/10.1007/BF02086095

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02086095

Keywords

Navigation