Skip to main content
Log in

Physico-chemical approach to ultrasonic cavitation dynamics on ultrasonic cavitation from the viewpoint of sonochemical reactions

  • Originalarbeiten
  • Polymere
  • Published:
Kolloid-Zeitschrift und Zeitschrift für Polymere Aims and scope Submit manuscript

Summary

The present theory treats ultrasonic cavitation as a train of expansion and contraction of a bubble, while most theories (e. g.Rayleigh's andGüth's) treated only contraction step.

As a measure for the cavitation effect on sonochemical reaction, we used the reaction rateB mole l−1 sec−1. Especially in the case of ultrasonic depolymerisation of linear polymers we can use the final valueg of the degree of polymerisation besides initial rateB of depolymerisation.

The theory can explain many experimental results of sonochemistry, e. g., effects of ultrasonic intensity and frequency, static pressure, size of bubble, gas in bubble, the kind of solvent, concentration of solution and temperature. The fact that the mono-disperse solution is easily obtained by ultrasonic depolymerisation can be explained, too.

The use of two characteritic constantsB andg contributes also to the research on mechanism of cavitation, e. g., the existence of a prephenomenon, the significance of imperfect cavitation and the diagraming of conditions for cavitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okuyama, M., Z. Elektrochem.59, 565 (1955).

    Google Scholar 

  2. Sata, N. andM. Okuyama, Z. Elektrochem.,58 196 (1954).

    Google Scholar 

  3. Harvey, E. N., D. K. Barnes, andW. D. McElroy, J. Cellular and Comp. Physiology24, 1 (1944).

    Google Scholar 

  4. Okuyama, M. andT. Hirose, J. Acoust. Soc. Jap.13, 7 (1957).

    Google Scholar 

  5. Hirose, T. andM. Okuyama, J. Acoust. Soc. Jap.13, 14 (1957),

    Google Scholar 

  6. S. Akiya, O. Nomoto, andS. Okui, J. Pharm. Jap.69, 133 (1949);

    Google Scholar 

  7. A. Weissler, H. W. Cooper, andS. Snyder, J. Amer. Chem. Soc.72, 1767 (1950).

    Google Scholar 

  8. Sata, N., H. Okuyama, andM. Okuyama, Symposium on Sonochemistry3, 4 (1958), Nagaoy. November 16. Ultrasonic Emulsification.

  9. Sata, N. andM. Okuyama, “Handbook of High Polymer Science” (“Kobunshi Jikken Gaku Koza“), Vol.10, p. 252 (Tokyo, 1958).

    Google Scholar 

  10. Okuyama, M. andT. Hirose, J. Acoust. Soc. Jap.16, 42 (1960).

    Google Scholar 

  11. Okuyama, M. andT. Hirose, J. Appl. Polymer Sci.7, 591 (1963).

    Google Scholar 

  12. Ono, S., Rev. Phys. Chem. Jap.14, 25 (1940).

    Google Scholar 

  13. Brett, H. H. W. andH. H. G. Jellinek, J. Polymer Sci.21, 535 (1956).

    Google Scholar 

  14. Akiya, S., O. Nomoto, andS. Okui, J. Pharm. Jap.69, 133 (1949).

    Google Scholar 

  15. Schmid, G., E. Beuttenmüller, andA. Rief, J. Pharm. Stoff-Technik13, 65 (1943).

    Google Scholar 

  16. Poritsky, H., Proc. 1st National Cong. App. Mech. Amer. Soc. Mech. Engrs., 1952, p. 813. The Collapse or Grwoth of a Spherical Bubble or Cavity in a Viscous Fluid.

  17. LaMer, V. K. andR. Gruen, Trans. Farad. Soc.48, 410 (1952).

    Google Scholar 

  18. Schneider, A. J. R., Ph. D. Thesis, California Institute of Technology, 1949. “Some Compressibility Effects of Cavitation Bubble Dynamics”.

  19. Okuyama, M. andT. Hirose, “Handbook of Ultrasonics” (“Cho-onpa Gijutsu Binran”), Nikkan Kogyo Shinbun Sha, Tokyo, 1960, p. 1069 (in Jap.).

    Google Scholar 

  20. Hirose, T., Technol. Repts. Osaka Univ.10, 395 (1960).

    Google Scholar 

  21. Noltingk, B. E. andE. A. Neppiras, Proc. Phys. Soc.63, B, 674 (1950).

    Google Scholar 

  22. Rayleigh, Phil. Mag. (6),34, 94 (1917);

    Google Scholar 

  23. Güth, W. Acustica6, 526 (1956).

    Google Scholar 

  24. Sata, N, H. Okuyama, andK. Chujo, Kolloid-Z.121, 46 (1951).

    Google Scholar 

  25. Nepprias, E. A. andB. E. Noltingk, Proc. Phys. Soc.64 B, 1032 (1951).

    Google Scholar 

  26. Ito, K., Symposium on Sonochemistry2, 18 (1957), Tokyo, Novemver 15. Influence of Surface Active Agent on Occurrence of Cavitation.

    Google Scholar 

  27. Uhara, I. andH. Wakeshima, in private discussion with the authors.

  28. Henglein, A., Z. Naturforschung10b, 20 (1955).

    Google Scholar 

  29. Briggs, H. B., J. B. Johnson, andW. P. Mason, J. Acoust. Soc. Amer.19, 64 (1947).

    Google Scholar 

  30. Rust, H. H., Angew. Chem.65, 249 (1953).

    Google Scholar 

  31. Brett, H. W. W. andH. H. G. Jellinek, J. Polymer Sci.13, 441 (1954).

    Google Scholar 

  32. Schmid, G. andE. Beuttenmüller Z. Elektrochem.50, 209 (1944).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 13 figures and 3 tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okuyama, M., Hirose, T. Physico-chemical approach to ultrasonic cavitation dynamics on ultrasonic cavitation from the viewpoint of sonochemical reactions. Kolloid-Z.u.Z.Polymere 226, 70–83 (1968). https://doi.org/10.1007/BF02086034

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02086034

Keywords

Navigation