Advertisement

International Journal of Theoretical Physics

, Volume 35, Issue 7, pp 1523–1539 | Cite as

Spacetime without reference frames: An application to the kinetic theory

  • T. Matolcsi
  • T. Gruber
Article

Abstract

Spacetime structures defined in the language of manifolds admit an absolute formulation, i.e., a formulation which does not refer to observers (reference frames). We consider an affine structure for Galilean spacetime. As an application the Chapman-Enskog iteration for the solution of the Boltzmann equation is given in an absolute form. As a consequence, the second approximations of the stress tensor and the heat flux are obtained in a form independent of observers, which throws new light on material frame indifference.

Keywords

Manifold Heat Flux Field Theory Elementary Particle Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appleby, P. G., and Kadianakis, N. (1983).Archive for Rational Mechanics and Analysis,84, 171.Google Scholar
  2. Appleby, P. G., and Kadianakis, N. (1986).Archive for Rational Mechanics and Analysis.95, 1.Google Scholar
  3. Boukary, M., and Lebon, G. (1985).Physics Letters,107A, 295.Google Scholar
  4. Chapman, C. (1970).The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge.Google Scholar
  5. Hoover, W. G., Moran, B., More, R. M., and Ladd, A. J. C. (1981).Physical Review A,24, 2109.Google Scholar
  6. Jou, D., Casas-Vasquez, J., and Lebon, G. (1993).Extended Irreversible Thermodynamics, Springer, Berlin.Google Scholar
  7. Kadianakis, N. (1983).Nuovo Cimento B,95, 82.Google Scholar
  8. Kadianakis, N. (1985).Nuovo Cimento A,89, 204.Google Scholar
  9. Kadianakis, N. (1991).Reports in Mathematical Physics,30, 21.Google Scholar
  10. Matolcsi, T. (1986).Archive for Rational Mechanics and Analysis,91, 99.Google Scholar
  11. Matolcsi, T. (1993).Spacetime without Reference Frames, Akadémiai Kiadó, Budapest.Google Scholar
  12. Murdoch, A. I. (1983).Archive for Rational Mechanics and Analysis,83, 185.Google Scholar
  13. Müller, I. (1972).Archive for Rational Mechanics and Analysis,45, 241.Google Scholar
  14. Müller, I. (1976).Acta Mechanica,24, 177.Google Scholar
  15. Müller, I. (1985).Thermodynamics, Pitmann, London.Google Scholar
  16. Müller, I., and Ruggeri, T. (1993).Extended Thermodynamics, Springer, New York.Google Scholar
  17. Noll, W. (1973).Archive for Rational Mechanics and Analysis,52, 62.Google Scholar
  18. Rodrigues, W. A., Jr., de Souza, Q. A. G., and Bozhkov, Y. (1995).Foundations of Physics,25, 871.Google Scholar
  19. Speziale, G. (1981).International Journal of Engineering Sciences,19, 63.Google Scholar
  20. Truesdell, C., and Muncaster, R. G. (1980).Fundamentals of Maxwell's Kinetic Theory of a Simple Monatomic Gas, Academic Press, New York.Google Scholar
  21. Wang, C. C. (1975).Archive for Rational Mechanics and Analysis,58, 381.Google Scholar
  22. Weyl, H. (1922).Space-Time-Matter, Dover, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • T. Matolcsi
    • 1
  • T. Gruber
    • 1
  1. 1.Department of Applied AnalysisEötvös Loránd UniversityBudapestHungary

Personalised recommendations