Netherland Journal of Aquatic Ecology

, Volume 29, Issue 3–4, pp 333–339 | Cite as

Microphytobenthos primary production of Tagus estuary intertidal flats (Portugal)

  • Vanda Brotas
  • Fernando Catarino
Primary Producers


The purpose of this study was to measure primary productivity of microphytobenthos of intertidal mudflats of Tagus estuary. Sampling occurred from 1991 to 1992, during low tide of spring waters on 2 stations, each one representative of a typical habitat. Net photosynthesis rates (NP) were measured in undisturbed sediment cores incubated in the laboratory andin situ. The results obtained indicated that NP in the laboratory was similar for the two stations, (mean values of 1.1 and 1.3 mmol O2 m−2 h−1, within a range of 5-fold). A stepwise regression analysis combining biotic and abiotic factors was performed to explain temporal variability, indicating that NP in each site was influenced by different parameters, with the exception of precipitation, which might play an important role in the disruption of sediment-water interface. Photosynthesis-Irradiance curves constructed with the results obtained insitu showed similar photophysiological responses of the two communities. Based on the values of photosynthetic efficiency (α), and of optimal light intensity (lk) measured and on the combination of the photoperiod pattern and the amount of light available for each sampling site, an estimation of total annual productivity is given: 47–178 g C m−2.


Microphytobenthos intertidal flats primary production P-I curves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AMORIM-FERREIRA, A., 1992. Estudo do efeito da herbivoria porHydrobia ulvae na biomassa das comunidades de microfitobentos do estuário do Tejo. Provas de aptidão pedagógica e capacidade científica. Faculdade de Ciências da Universidade de Lisboa, 1–29.Google Scholar
  2. ASMUS, R., 1982. Field measurements on seasonal variation of the activity of primary producers on a sandy tidal flat in the northern Wadden Sea. Neth. J. Sea Res., 16: 389–402.Google Scholar
  3. BLANCHARD, G. F. and P. MONTAGNA, 1992. Photosynthetic response of natural assemblages of marine benthic microalgae to short- and long-term variations of incident irradiance in Baffin Bay, Texas. J. Phycol., 28: 7–14.Google Scholar
  4. BROTAS, V., T. CABRITA, A. PORTUGAL, J. SERÔDIO and F. CATARINO, 1995. Spatio-temporal distribution of microphytobenthic biomass in tidal flats of the Tagus estuary (Portugal). Hydrobiologia, 300/301: 93–104Google Scholar
  5. CAMMEN, L. M., 1991. Annual bacterial production in relation to benthic microalgal production and sediment oxygen uptake in an intertidal sandflat and an intertidal mudflat. Mar. Ecol. Prog. Ser., 71: 13–25.Google Scholar
  6. COLIJN, F. and V. N. DE JONGE, 1984. Primary production of the microphytobenthos in the Ems-Dollard estuary. Mar. Ecol. Prog. Ser., 14: 185–196.Google Scholar
  7. DAVIS, M. W. and C. D. McINTIRE, 1983. Effects of physical gradients on the dynamics of sediment-associated algae. Mar. Ecol. Prog. Ser., 13: 103–114.Google Scholar
  8. EATON, J. W. and B. MOSS, 1966. The estimation of numbers and pigment content in epipelic algal populations. Limnol. Oceanogr., 11: 584–595.Google Scholar
  9. GRANT, J., 1986. Sensivity of benthic community respiration and primary production to changes in temperature and light. Mar. Biol., 90: 299–306.Google Scholar
  10. GRANT, J., U. V. BATHMANN and E. L. MILLS, 1986. The interaction between benthic diatom films and sediment transport. Estuar. coast. Shelf Sci., 23: 225–238.Google Scholar
  11. HARGAVE, B.T., N. J. PROUSE, G. A. PHILIPS and P. A. NEAME, 1983. Primary production and respiration in pelagic and benthic communities at two intertidal sites in the upper Bay of Fundy. Can. J. Fish. Aquat. Sci., Suppl. 40: 229–243.Google Scholar
  12. HARRIS, G. P., 1980. The measurement of photosynthesis in natural populations of phytoplankton. In: I. Morris Ed., The physiological ecology of phytoplankton. Blackwell Scientific, Oxford: 129–185.Google Scholar
  13. HOLMES, R. W. and B. E. MAHALL, 1982. Preliminary observations on the effects of flooding and desiccation upon the net photosynthetic rates of high intertidal estuarine sediments. Limnol. Oceanogr., 27: 954–958.Google Scholar
  14. JASSBY, A.D. and T. PLATT 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr., 21: 540–547.Google Scholar
  15. JOINT, I. R., 1978. Microbial production of an estuarine mudflat. Estuar. Coast. Mar. Sci., 7: 185–195.Google Scholar
  16. LAMONTAGNE, I., A. CARDINAL and L. FORTIER, 1986. Intertidal microalgal production and the auxiliary energy of tides. Mar. Biol., 91: 409–419.Google Scholar
  17. LORENZEN, C. J., 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol. Oceanogr., 12: 343–346.Google Scholar
  18. MORRISEY, D. J., 1988. Differences in effects of grazing by deposit-feedersHydrobia ulvae (Pennant) (Gastropoda: Prosobranchia) andCorophium arenarium Crawford (Amphipoda) on sediment microalgal populations. I. Qualitative differences. J. Exp. Mar. Biol. Ecol., 118: 33–42.Google Scholar
  19. PINCKNEY, J. and R. G. ZINGMARK, 1991. Effects of tidal stage and sun angles on intertidal benthic microalgal productivity. Mar. Ecol. Prog. Ser., 76: 81–89.Google Scholar
  20. PINCKNEY, J. and R. G. ZINGMARK, 1993a. Modeling the annual production of intertidal benthic microalgae in estuarine ecosystems. J. Phycol., 29: 396–407.Google Scholar
  21. PINCKNEY, J. and R. G. ZINGMARK, 1993b. Photophysiological responses of intertidal benthic microalgal communities to in situ light environments: methodological considerations. Limnol. Oceanogr., 38: 1373–1383.Google Scholar
  22. RIZNYK, R. Z., J. I. EDENS and R. C. LIBBY, 1978. Production of epibenthic diatoms in a southern California impounded estuary. J. Phycol., 14: 273–279.Google Scholar
  23. SALDANHA, L., 1980. Estudo ambiental do Estuário do Tejo. Povoamentos bentónicos, peixes e ictioplancton do estuário do Tejo. Comissāo Nacional do Ambiente, Tejo n∘ 5 — rel 4. Lisboa.Google Scholar
  24. SHAFFER, G. P., 1988. A comparison of benthic microfloral production on the West and Gulf coasts of the United States: an introduction to the dynamic K-systems model. Mar. Ecol. Prog. Ser., 43: 55–62.Google Scholar
  25. SHAFFER, G. P., and P. CAHOON, 1987. Extracting information from ecological data containing high spatial and temporal variability: benthic microfloral production. Int. J. General Systems, 13: 107–123.Google Scholar
  26. SULLIVAN, M. J. and C. A. MONCRIEFF, 1988. Primary production of edaphic algal communities in a Mississipi salt marsh. J. Phycol., 24: 49–58.Google Scholar
  27. VALE, C. and B. SUNDBY, 1987. Suspended sediment fluctuations in the Tagus Estuary on semi-diurnal and fortnightly time scales. Estuar. Coast. Shelf Sci., 25: 495–508.Google Scholar
  28. VAN ES, F. B., 1982. Community metabolism of intertidal flats in the Ems-Dollard estuary. Mar. Biol., 66: 95–108.Google Scholar
  29. VAN RAALTE, C., I. VALIELA and J. M. TEAL, 1976. Production of epibenthic salt marsh algae: light and nutrient limitation. Limnol. Oceanogr., 21: 862–872.Google Scholar
  30. VARELA, M. and E. PENAS, 1985. Primary production of benthic microalgae in an intertidal sand flat of the Ria de Arosa, NW Spain. Mar. Ecol. Prog. Ser., 25: 111–119.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Vanda Brotas
    • 1
  • Fernando Catarino
    • 1
  1. 1.Departamento de Biologia VegetalFaculdade de Ciências da Universidade de LisboaLisboaPortugal

Personalised recommendations