International Journal of Theoretical Physics

, Volume 35, Issue 2, pp 323–331 | Cite as

Separation of the massless spin-1 equation in Robertson-Walker space-time

  • Antonio Zecca


The massless spin-1 free field equation is studied via the Newman-Penrose formalism and separated by the Chandrasekhar-Teukolski method. The temporal and angular equations are explicitly integrated. The radial equations are solved in the flat-universe case. The closed-universe case shows, in principle, the existence of a discrete spectrum of the energy of the massless particles.


Field Theory Elementary Particle Quantum Field Theory Field Equation Discrete Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramovitz, W., and Stegun, I. E. (1970).Handbook of Mathematical Functions, Dover, New York.Google Scholar
  2. Buchdahl, H. A. (1958).Nuovo Cimento.10, 96.Google Scholar
  3. Buchdahl, H. A. (1962).Nuovo Cimento,25, 486.Google Scholar
  4. Buchdahl, H. A. (1982).Journal of Physics A,15, 1.Google Scholar
  5. Chandrasekhar, S. (1983).The Mathematical Theory of Black Holes, Oxford University Press, Oxford.Google Scholar
  6. Fierz, M. and Pauli, W. (1939).Proceedings of the Royal Society of London A,173, 211.Google Scholar
  7. Illge, R. (1988).Astronomie Nachrichten,309, 253.Google Scholar
  8. Illge, R. (1992).Zeitschrift für Analysis und ihre Anwendungen,11, 25.Google Scholar
  9. Illge, R. (1993).Communications in Mathematical Physics,158, 433.Google Scholar
  10. Newman, E. T. and Penrose, R. (1962).Journal of Mathematical Physics,3, 566.Google Scholar
  11. Montaldi, E., and Zecca, A. (1994).International Journal of Theoretical Physics,33, 1053.Google Scholar
  12. Moon, P., and Spencer, D. E. (1961).Field Theory Handbook, Springer-Verlag, Berlin.Google Scholar
  13. Penrose, R. (1965).Proceedings of the Royal Society of London A,284, 159.Google Scholar
  14. Penrose, R. (1968).International Journal of Theoretical Physics,1, 61.Google Scholar
  15. Penrose, R., and MacCallum, M. A. H. (1972).Physics Reports,6C, 241.Google Scholar
  16. Penrose, R., and Rindler, W. (1986).Spinors and Space-Time, Cambridge University Press, Cambridge, Vols. I and II.Google Scholar
  17. Wünsch, V. (1978).Beiträge zur Analysis,12, 47.Google Scholar
  18. Wünsch, V. (1985).General Relativity and Gravitation,17, 15.Google Scholar
  19. Zecca, A. (1995). The Dirac equation in the Robertson-Walker space-time,Journal of Mathematical Physics, to appear.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Antonio Zecca
    • 1
  1. 1.Dipartimento di Fisica dell' Universita' and INFNMilanItaly

Personalised recommendations