International Journal of Theoretical Physics

, Volume 35, Issue 2, pp 231–244 | Cite as

Finite quantum field theory in noncommutative geometry

  • H. Grosse
  • C. Klimčík
  • P. Prešnajder
Article

Abstract

We describe a self-interacting scalar field on a truncated sphere and perform the quantization using the functional (path) integral approach. The theory possesses full symmetry with respect to the isometries of the sphere. We explicitly show that the model is finite and that UV regularization automatically takes place.

Keywords

Field Theory Elementary Particle Quantum Field Theory Scalar Field Integral Approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Connes, A. (1986).Publications IHES,62, 257.Google Scholar
  2. Connes, A. (1990).Géométrie Non-Commutative, Inter Editions, Paris.Google Scholar
  3. Dubois-Violette, M. (1988).Comptes Rendus de l'Academie des Sciences Paris Serie I,307, 403.Google Scholar
  4. Dubois-Violette, M., Kerner, R., and Madore, J. (1990).Journal of Mathematical Physics,31, 316.Google Scholar
  5. Coquereaux, R., Esposito-Farese, G., and Vaillant, G. (1991).Nuclear Physics B,353, 689.Google Scholar
  6. Chamseddine, A. H., Felder, G., and Fröhlich, J. (1992). Gravity in the noncommutative geometry, Zürich preprint ETH-TH/1992-18.Google Scholar
  7. Madore, J. (1991).Journal of Mathematical Physics,32, 332.Google Scholar
  8. Madore, J. (1992).Classical and Quantum Gravity,9, 69.Google Scholar
  9. Madore, J. (n.d.).Non-Commutative Geometry and Applications, Cambridge University Press, Cambridge, to appear.Google Scholar
  10. Grosse, H., and Prešnajder, P. (1993).Letters in Mathematical Physics,28, 239.Google Scholar
  11. Grosse, H., and Madore, J. (1992).Physics Letters B,283, 218.Google Scholar
  12. Grosse, H., Klimčík, C., and Prešnajder, P. (n.d.-a). Field theory on truncated superspace, to appear.Google Scholar
  13. Grosse, H., Klimčík, C., and Prešnajder, P. (n.d.-b). Finite gauge model on truncated sphere, to appear.Google Scholar
  14. Prudnikov, A. P., Brytshkov, Yu. A., and Maritshev, O. I. (1981).Integrals and Series, Nauka, Moscow [in Russian].Google Scholar
  15. Simon, B. (1974).The P(Φ)2 Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, New Jersey.Google Scholar
  16. Vilenkin, N. Ya. (1965).Special Functions and the Theory of Group Representations, Nauka, Moscow [in Russian].Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • H. Grosse
    • 1
  • C. Klimčík
    • 2
  • P. Prešnajder
    • 3
  1. 1.Institute for Theoretical PhysicsUniversity of ViennaViennaAustria
  2. 2.Theory Division CERNGeneva 23Switzerland
  3. 3.Department of Theoretical PhysicsComenius UniversityBratislavaSlovakia

Personalised recommendations