Advertisement

Mathematical Geology

, Volume 26, Issue 4, pp 491–503 | Cite as

A neural network approach to geostatistical simulation

  • P. A. Dowd
  • C. SaraÇ
Article

Abstract

Neural networks offer a non-algorithmic approach to geostatistical simulation with the possibility of automatic recognition of correlation structure. The paper gives a brief overview of neural networks and describes a feedforward, back-propagation network for geostatistical simulation. The operation of the network is illustrated with two simple one-dimensional examples which can be followed through with hand calculations to give an insight into the operation of the network. The convergence of the network is described in terms of the variogram calculated from the values at each of the output nodes at each iteration.

Key words

conditional simulation geostatistics neural network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackley, D. H., Hinton, G. E., and Sejnowski, T. J., 1985. A Learning Algorithm for Boltzmann Machines: Cognit. Sci., v. 9, p. 147–169.Google Scholar
  2. Ash, T., 1989, Dynamic Node Creation in Back-Propagation Networks: ICS Report 8901, San Diego.Google Scholar
  3. Davalo, E., and Naim, P. 1991.Neural networks: MacMillan Press, London. 145 p.Google Scholar
  4. David, M., 1988, Handbook of Applied Geostatistical Ore Reserve Estimation, inDevelopments in Geomathematics No. 6: Elsevier, Netherlands, 216 p.Google Scholar
  5. Deutsch, C., and Journel, A. G., 1992.GSLIB: Geostatistical Software Library and User's Guide: Oxford University Press, New York.Google Scholar
  6. Dowd, P. A., 1992, A review of Recent Developments in Geostatistics: Comp. Geosci., v. 17. n. 10, p. 1481–1500.Google Scholar
  7. Fahlman, S. E. and Lebiere, C., 1990, The Cascade-Correlation Learning Architecture,in D. Touretetzky (Ed.).Advances in Neural Information Processing Systems, vol. 2: Morgan Kaufmann, San Mateo, p. 524–532.Google Scholar
  8. Farmer, C., 1991, Numerical Rocks,in J. Fayers and P. King (Eds.),The Mathematical Generation of Reservoir Geology: Oxford University Press, New York.Google Scholar
  9. Grossberg, S., 1988,Neural Networks and Natural Intelligence: MIT Bradford Press.Google Scholar
  10. Hopfield, J. J., 1982, Neural Networks and Physical Systems with Emergent Collective Computational Abilities: Proc. Nat. Acad. Sci., USA, v. 79, p. 2554–2558.Google Scholar
  11. Hopfield, J. J., and Tank, D. W., 1985, Neural Computation of Decisions in Optimisation Problems: Biol. Cybernet., v. 52, p. 141–152.Google Scholar
  12. Kohonen, T., 1978,Associative Memory—System Theoretical Approach: Springer. Berlin.Google Scholar
  13. Kohonen, T., 1982, Self-Organised Formation of Topologically Correct Feature Maps: Biol. Cybernet., v. 43, p. 59–69.Google Scholar
  14. Kohonen, T., 1990,Self-Organisation and Associative Memory: Springer-Verlag. Berlin.Google Scholar
  15. Korn, G. A., 1991,Neural Network Experiments on Personal Computers and Workstations: MIT Press, Bradford Book, 248 p.Google Scholar
  16. Kosko, B., 1988, Bidirectional Associative Memories: IEEE Trans. Syst., Man Cybernet. v. 18, n. 1.Google Scholar
  17. McCulloch, W. S., and Pitts, W., 1943. A Logical Calculus of the Ideas Imminent in Nervous Activity: Bull. Math. Biophys., v. 5. p. 115–133.Google Scholar
  18. Müller, B., and Reinhardt, J., 1991,Neural Networks: An Introduction: Springer, Berlin.Google Scholar
  19. Rumelhart, D. E., Hinton, G. E., and Williams, R. J., 1986a, Learning Representations by Back-Propagating Errors: Nature, v. 323. p. 533.Google Scholar
  20. Rumelhart, D. E., Hinton, G. E., and Williams, R. J., 1986b, Learning Internal Representations by Error Propagation,in J. L. McClelland and D. E. Rumelhart (Eds.),Parallel Distributed Processing: Explorations in the Microstructures of Cognition, Vol. 1: MIT Press, p. 318.Google Scholar
  21. Szu, H., 1987a, Fast Simulated Annealing,in J. Denker (Ed.),Neural Networks for Computing: AIP Conference, Vol. 15: Snow Bird Publications, p. 420–425.Google Scholar
  22. Szu, H., 1987b, Non-Convex Optimisation: SPIE, v. 968, p. 59–65.Google Scholar
  23. Wu, X., and Zhou, Y., 1993, Reserve Estimation Using Neural Network Techniques: Comp. Geosci., v. 19, n. 4, p. 567–576.Google Scholar

Copyright information

© International Association for Mathematical Geology 1994

Authors and Affiliations

  • P. A. Dowd
    • 1
  • C. SaraÇ
    • 1
  1. 1.Department of Mining and Mineral EngineeringUniversity of LeedsLeedsUK

Personalised recommendations