On the resolution of mixed frequency distributions into normal components

  • E. Mundry


The resolution of mixed frequency distributions into normal components may be accomplished graphically on probability paper. By means of nonlinear regression, a method for such a resolution in the probability net is given and exemplified. It is based on the observed cumulative frequencies.

Key words

frequency distribution regression analysis statistics general geology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M., and Stegun, I. A., 1964, Handbook of mathematical functions: U.S. Government Printing Office, Washington, 1046 p.Google Scholar
  2. McCammon, R. B., 1969,fortran IV program for nonlinear estimation: Kansas Geol. Survey Computer Contr. 34, 20 p.Google Scholar

Additional references

  1. Ageno, M., and Frontali, C., 1963, Analysis of frequency distribution curves in overlapping Gaussians: Nature, v. 198, no. 4887, p. 1294–1295.Google Scholar
  2. Bhattacharya, C. G., 1967, A simple method of resolution of a distribution into Gaussian components: Biometrics, v. 23, p. 115–135.Google Scholar
  3. Cassie, R. M., 1954, Some uses of probability paper in the analysis of size frequency distributions: Australian Jour. Marine Freshwater Res., v. 5, p. 513–522.Google Scholar
  4. Cohen, A. C., 1967, Estimation in mixtures of two normal distributions: Technometrics, v. 9, no. 1, p. 15–28.Google Scholar
  5. Daeves, K., and Beckel, A., 1958, Gro\zahl-Methodik und Häufigkeitsanalyse, 2. Aufl.: Weinheim/Bergstr., 143 p.Google Scholar
  6. Ghose, B. K., 1970, Statistical analysis of mixed fossil populations: Jour. Intern. Assoc. Math. Geol., v. 2, no. 3, p. 265–276.Google Scholar
  7. Harding, J. P., 1949, The use of probability paper for the graphical analysis of polymodal frequency distributions: Jour. Marine Biol. Assoc., v. 28, p. 141–153.Google Scholar
  8. Hasselblad, V., 1966, Estimation of parameters for a mixture of normal distributions: Technometrics, v. 8, no. 3, p. 431–444.Google Scholar
  9. Knoll, F., 1942, Zur Gro\zahlforschung: über die Zerspaltung einer Mischverteilung in Normalverteilungen: Archiv f. mathem. Wirtschafts- u. Sozialforschung, v. 8, no. 1, p. 36–49.Google Scholar
  10. Medgyessy, P., 1961, Decomposition of superpositions of distribution functions: Budapest, 227 p.Google Scholar
  11. Nothnagel, K., 1968, Ein graphisches Verfahren zu Zerlegung von Mischverteilungen: Qualitätskontrolle, v. 13, p. 21–24.Google Scholar
  12. Pearson, K., 1894, Contribution to the mathematical theory of evolution: Phil. Trans. A, v. 185, p. 71–110.Google Scholar
  13. Preston, E. J., 1953, A graphical method for the analysis of statistical distributions into two normal components: Biometrika, v. 40, p. 460–464.Google Scholar
  14. Strömgren, B., 1954, Tables and diagrams for dissecting a frequency curve into components by the half-invariant method: Skandinavisk Aktuarietidskrift, v. 17, p. 7–54.Google Scholar
  15. Weichselberger, K., 1961, über ein graphisches Verfahren zur Trennung von Mischverteilungen und zur Identifikation kupierter Normalverteilungen bei gro\em Stichprobenumfang: Metrika, v. 4, p. 178–229.Google Scholar

Copyright information

© Plenum Publishing Corporation 1972

Authors and Affiliations

  • E. Mundry
    • 1
  1. 1.Niedersächs. Landesamt f. BodenforschungFRD

Personalised recommendations