Skip to main content
Log in

Estimation of the Mesozoic geological time scale

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

Geological time scales are constructed by combining the stratigraphic record with radiometric dates and their standard deviations. The stratigraphic record encompasses litho-, bio-, chrono-, and magnetostratigraphy. The statistical methods employed should embody concepts and data available for the systems considered. Recently, in order to estimate the ages of 31 Mesozoic stage boundaries, use was made of a database with chronostratigraphic classifications for 340 dates, biostratigraphic data including ammonite subzones, and information on seafloor spreading. This paper is primarily concerned with the propagation of errors through the successive steps of the data analysis. The following stepwise approach was taken for combining the different types of data: (1) maximum likelihood estimation with windows set around prior stage boundary estimates, (2) averaging of estimates with variable precision including magnetochronologic data, and (3) calibration by means of cubic smoothing splines assuming equal duration of ammonite subzones. The end product is a time-scale in which the stage boundary ages are accompanied by approximate 95 per cent confidence intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agterberg, F. P., 1988, Quality of Time Scales—A Statistical Appraisal,in D. F. Merriam, ed.,Current Trends in Geomathematics: Plenum, New York, p. 57–103.

    Google Scholar 

  • Agterberg, F. P., 1990,Automated Stratigraphic Correlation: Elsevier, Amsterdam, 424 p.

    Google Scholar 

  • Cande, S. C., and Kent, D. V., 1992, A New Geomagnetic Polarity Time Scale for the Late Cretaceous and Cenozoic: J. Geophys. Res., v. 97, p. 13917–13951.

    Google Scholar 

  • Deming, W. E., 1948,Statistical Adjustment of Data: Wiley, New York, 261 p.

    Google Scholar 

  • Gradstein, F. M., Agterberg, F. P., Aubry, M.-P., Berggren, W. A., Flynn, J. J., Hewitt, R., Kent, D. V., Klitgord, K. D., Miller, K. G., Obradovich, J. D., Ogg, J. G., Prothero, D. R., and Westermann, G. E. G., 1988, Seal Level History: Science, v. 214, p. 599–601.

    Google Scholar 

  • Gradstein, F. M., Agterberg, F. P., Ogg, J. G., Hardenbol, J., Van Veen, P., and Huang, Z., A Mesozoic Time Scale: J. Geophys. Res. (in press).

  • Harland, W. B., Cox, A. V., Llewellyin, P. G., Pickton, C. A. G., Smith, A. G., and Walters, R., 1982,A Geologic Time Scale: Cambridge University Press, Cambridge, 131 p.

    Google Scholar 

  • Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G., 1990,A Geological Time Scale: Cambridge University Press, Cambridge, 263 p.

    Google Scholar 

  • Larson, R. L., and Hilde, T. W. C., 1975, A Revised Time Scale of Magnetic Reversals for the Early Cretaceous and Late Jurassic: J. Geophys. Res., v. 80, p. 2586–2594.

    Google Scholar 

  • Ludden, J., 1992, Radiometric Age Determinations for Basement from Sites 765 and 766, Argo Abyssal Plain and Northwestern Australia: Proc., Ocean Drilling Program, Scientific Results, Vol. 123.

  • Obradovich, J. D., A Cretaceous Time-Scale,in W. G. E. Caldwell, ed.Evolution of the Western Interior Foreland Basin: Geological Assoc. of Canada Spec. (in press).

  • Odin, G. S., 1994, Geological Time Scale: Comptes Rendus Acad. Sci. Paris, t. 318, série II, p. 59–71.

    Google Scholar 

  • Pringle, M. S., Radiometric Dating of Seamount Edifices of Guots, Western Pacific: Proc. Ocean Drilling Program Sci. Results, Vol. 144 (in press).

  • Rao, C. R., 1973,Linear Statistical Inference and Its Applications, Wiley, New York, 625 p.

    Google Scholar 

  • Reinsch, C. H., 1967, Smoothing by Spline Functions: Numerische Mathematick, v. 16, p. 451–454.

    Google Scholar 

  • Sharpton, V. L., Dalrymple, G. B., Marin, L. E., Ryder, G., Schuaraytz, and Uruttia-Fucugauchi, J., 1992, New Links Between the Chicxulub Impact Structure and the Cretaceous/Tertiary Boundary: Nature, v. 359, p. 819–821.

    Google Scholar 

  • Swisher, C. C., Grajales-Nishimura, J. M., Montanari, A., Margolis, S. V., Claeyes, P., Alvarez, W., Renne, P., Cedillo-Pardo, E., Muarasse, F., Curtis, G. H., Smit, J., and Williams, M. O., 1992, Coeval40Ar/39Ar Ages of 65.0 Million Years Ago from Chicxulub Crater Melt Rock and Cretaceous-Tertiary Boundary Tektites: Science, v. 257, p. 954–958.

    Google Scholar 

  • Taylor, J. R., 1982,An Introduction to Error Analysis: University Science Books, Mill Valley, CA.

    Google Scholar 

  • Thorkerson, D. J., Mortensen, J. K., Marsden, H., and Taylor, R. P., Age and Tectonic Setting of Early Jurassic Episodic Volcanism Along the Northeastern Margin of the Hazelton Trough, Northern British Columbia: Geol. Soc. Am. Spec. (in press).

  • Wahba, G., 1975, Smoothing Noisy Data with Spline Functions: Numerische Mathematik, v. 24, p. 383–393.

    Google Scholar 

  • Wold, S., 1974, Spline Functions in Data Analysis: Technometrics, v. 16, n. 1, p. 1–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agterberg, F.P. Estimation of the Mesozoic geological time scale. Math Geol 26, 857–876 (1994). https://doi.org/10.1007/BF02083122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02083122

Key words

Navigation