International Journal of Theoretical Physics

, Volume 35, Issue 1, pp 135–154 | Cite as

Production of Dirac particles due to Riccion coupling

  • S. K. Srivastava
  • K. P. Sinha
Article

Abstract

It has been noted that at high energy the Ricci scalar is manifested in two different ways, as a matter field as well as a geometrical field (which is its usual nature even at low energy). Here, using the material aspect of the Ricci scalar, its interaction with Dirac spinors is considered in four-dimensional curved space-time. We find that a large number of fermion-antifermion pairs can be produced by the exponential expansion of the early universe.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avramidy, I. G., and Barvinsky, A. O. (1985).Physics Letters B. 159, 269.Google Scholar
  2. Audretsch, J., and Schafer, G. (1978).Journal of Physics A,11, 1583.Google Scholar
  3. Barrow, J. D., and Cotsakis, S. (1988).Physics Letters B,214, 515.Google Scholar
  4. Barrow, J. D., and Cotsakis, S. (1991).Physics Letters B,258, 299.Google Scholar
  5. Birrell, N. D., and Davies, P. C. W. (1982).Quantum Fields in Curved Spaces, Cambridge University Press, Cambridge.Google Scholar
  6. Buchbinder, I. L., Odintsov, S. D., and Shapiro, I. L. (1992).Effective Action in Quantum Gravity, IOP Publishing Ltd.Google Scholar
  7. DeWitt, B. S. (1975).Physics Reports,19, 295.Google Scholar
  8. Fradkin, E. S., and Tseylin, A. A. (1982).Nuclear Physics B,201, 469.Google Scholar
  9. Hawking, S. W., and Penrose, R. (1970).Proceedings of the Royal Society of London A,314, 529.Google Scholar
  10. Mayer, A. B., and Schmidt, H. J. (1993).Classical and Quantum Gravity,10, 2441.Google Scholar
  11. Mottola, E. (1985).Physical Review D,31, 754.Google Scholar
  12. Parker, L. (1971).Physical Review D,3, 346.Google Scholar
  13. Parker, L. (1977). InAsymptotic Structure of Space-Time, F. P. Esposito and L. Wirten, eds., Plenum Press, New York.Google Scholar
  14. Parker, L., and Toms, D. J. (1984).Physical Review D,29, 1584.Google Scholar
  15. Pipes, L. A., and Harvill, L. R. (1970).Applied Mathematics for Engineers and Physicists, McGraw-Hill, New York.Google Scholar
  16. Srivastava, S. K. (1989).Journal of Mathematical Physics,30, 2838.Google Scholar
  17. Srivastava, S. K., and Sinha, K. P. (1993).Physics Letters B,307, 40.Google Scholar
  18. Srivastava, S. K., and Sinha, K. P. (1994). Quantization of Ricci scalar,Journal of the Indian Mathematical Society,61, 80.Google Scholar
  19. Stelle, K. S. (1977).Physical Review D,16, 953.Google Scholar
  20. Utiyama, R., and DeWitt, B. S. (1962).Journal of Mathematical Physics,3, 608.Google Scholar
  21. Whitt, B. (1984).Physics Letters B,145, 176.Google Scholar
  22. Whittaker, E. T., and Watson, G. N. (1969).A Course of Modern Analysis, Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • S. K. Srivastava
    • 1
    • 2
  • K. P. Sinha
    • 3
    • 4
  1. 1.Department of MathematicsNorth Eastern Hill UniversityUmshing, ShillongIndia
  2. 2.IUCAAGaneshkhind, PuneIndia
  3. 3.Institute of Fundamental ResearchNorth Eastern Hill UniversityShillongIndia
  4. 4.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations