International Urology and Nephrology

, Volume 3, Issue 3, pp 295–313 | Cite as

Enzymatic-histochemical studies in experimental uraemia

  • L. Szegedy
  • M. Csellár
  • F. Rényi-Vámos


Permeability of the cerebral capillaries, transcellular transport of fluids, glucose and ions depend on the condition of the cell membrane. Enzymes which catalyse the energy-releasing processes are important factors in this respect. In uraemia, of ATP-ase, alkaline phosphomonoesterase activity was significantly diminished in the basement membrane of the capillaries and in the cell membranes of the pericapillary glial processes. Decreased activity of these enzymes in uraemia may increase cerebral capillary permeability, the initial phenomenon of uraemic neuropathological alterations. Disturbance in cell membrane transport in uraemia is further revealed by the pericapillary increase in the activity of alpha glycerophosphate dehydrogenase. Hypernatraemia and hyperkalaemia are supposed to promote this phenomenon. The present investigations have shown that the development of uraemia is accompanied in the cerebellum by decreased activity of succinic dehydrogenase and (to a lesser extent) alpha glycerophosphate dehydrogenase, and a considerably increased activity of lactic dehydrogenase. Anaerobic instead of oxidative glycolysis seems to get the upper hand in the energy-releasing metabolic processes of the nerve tissues in uraemia.


Permeability Membrane Transport Succinic Dehydrogenase Capillary Permeability Glycerophosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, C. W. M.: Neurohistochemistry. Elsevier, Amsterdam 1965.Google Scholar
  2. 2.
    Adams, C. W. M.: Histochemistry of the cells in the nervous system. Elsevier, Amsterdam 1965.Google Scholar
  3. 3.
    Adams, C. W. M., Davison, A. N., Gregson, N. A.: Enzyme inactivity of myelin: histochemical and biochemical evidence.J. Neurochem. 10, 383 (1963).PubMedGoogle Scholar
  4. 4.
    Becker, N. H., Barron, K. D.: The cytochemistry of anoxic and anoxic-ischemic encephalopathy in rats.Amer. J. Path. 38, 161 (1961).PubMedGoogle Scholar
  5. 5.
    Bennett, H. S.: Morphological aspects of extracellular polysaccharides.J. Histochem. Cytochem. 11, 14 (1963).Google Scholar
  6. 6.
    Bodechtel, G., Erbslöh, F.: Die Veränderungen des Zentralnervensystems bei Nierenkrankheiten. In: O. Lubarsch, F. Henke, R. Rössle: Handbuch der speziellen pathologischen Anatomie und Histologie. Springer, Berlin 1958.Google Scholar
  7. 7.
    Bradbury, M. W. B., Coxon, R. V.: The penetration of urea in the central nervous system at high blood levels.J. Physiol. 163, 423 (1962).PubMedGoogle Scholar
  8. 8.
    Brante, G., Brücke, F.: Biochemistry of the central nervous system. London 1959. Cit. Adams, C. W. M.: Histochemistry of the cells in the nervous system. Adams, C. W. M.: Neurohistochemistry. Elsevier, Amsterdam 1965.Google Scholar
  9. 9.
    De Duve, C.: The function of intracellular hydrolases.Exp. Cell Res. Suppl. 7, 169 (1959).Google Scholar
  10. 10.
    De Duve, C., Pressman, B. C., Giannetto, R., Wattiaux, R., Appelmans, F.: Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat liver tissue.Biochem. J. 60, 604 (1955).PubMedGoogle Scholar
  11. 11.
    Dobbing, J.: The blood-brain barrier: some recent developments.Guy's Hosp. Rep. 112, 267 (1963).Google Scholar
  12. 12.
    Effersoe, P.:Acta Med. scand. 160, 417 (1958). Cit. Olsen, St.: The brain in uremia. Munksgaard, Copenhagen 1961.PubMedGoogle Scholar
  13. 13.
    Essner, E., Novikoff, A. B., Masek, B.: Adenosine triphosphatase and 5-nucleotidase activity in the plasma membrane of liver cells as revealed by electron microscopy.J. Biophys. biochem. cytol. 4, 711 (1958).PubMedGoogle Scholar
  14. 14.
    Friede, R. L.: The enzymatic response of astrocytes to various ions in vitro.J. Cell Biol. 20, 5 (1964).PubMedGoogle Scholar
  15. 15.
    Friede, R. L., Fleming, L. M., Knoller, M.: A comparative mapping of enzymes involved in hexosemonophosphate shunt and citric acid cycle in the brain.J. Neurochem. 10, 263 (1963).PubMedGoogle Scholar
  16. 16.
    Gomori, G.:Proc. Soc. exp. Biol. 42, 33 (1939). Cit. Kiszely, Gy., Pósalaky, Z.: Mikrotechnische und histochemische Untersuchungsmethoden. Akadémiai Kiadó, Budapest 1964.Google Scholar
  17. 17.
    Hess, A.: Blood-brain barrier and ground substance of central nervous system.Arch. Neurol. Psychiat. 73, 380 (1955).Google Scholar
  18. 18.
    Hess, A.: The ground substance of the central nervous system and its relation to the blood-brain barrier.World Neurol. 3, 118 (1962).PubMedGoogle Scholar
  19. 19.
    Hess, H. H., Pope, A.: Effects of metal cations on adenosine triphosphatases of the rat brain.Fed. Proc. 16, 196 (1957).Google Scholar
  20. 20.
    Hess, H. H., Pope, A.: Intralaminar distribution of adenosine triphosphatase activity in rat cerebral cortex.J. Neurochem., 3, 287 (1959).PubMedGoogle Scholar
  21. 21.
    Heyman, A., Patterson, J. L., Jones, R. W.: Cerebral circulation and metabolism in uremia.Circulation, 3, 558 (1951).PubMedGoogle Scholar
  22. 22.
    Horányi, B.: Neurological aspects of renal diseases.Acta med. Acad. Sci. hung. 19, 77 (1963).Google Scholar
  23. 23.
    Kaplan, S. E., Novikoff, A. B.: The localisation of adenosine triphosphatase activity in rat kidney: electron-microscopic examination of reaction product in formol-calciumfixed frozen section.J. Histochem. Cytochem. 7, 295 (1959).Google Scholar
  24. 24.
    Kleemann, Ch. R., Davson, H., Levin, E.: Urea transport in the central nervous system.Amer. J. Physiol. 203, 739 (1962).PubMedGoogle Scholar
  25. 25.
    Landers, J. W., Chason, J. L., Gonzales, J. E., Palutke, W.: Morphology and enzymatic activity of rat cerebral capillaries.Lab. Invest. 11, 1253 (1962).PubMedGoogle Scholar
  26. 26.
    Luse, A., Harris, B.: Brain ultrastructure in hydration and dehydration.Arch. Neurol. Psychiat. 4, 139 (1961).Google Scholar
  27. 27.
    MacDonald, M., Spector, R. G.: The influence of anoxia on respiratory enzymes in rat brain.Brit. J. exp. Path. 44, 11 (1963).Google Scholar
  28. 28.
    Magee, R. M., Stoner, N. B., Barnes, J. M.: The experimental production of oedema in the central nervous system of the rat by triethyl tin compounds.J. Path. Bact. 73, 107 (1957).Google Scholar
  29. 29.
    Nandy, K., Bourne, G. H.: Alkaline phosphatase in brain and spinal cord.Nature 200, 1216 (1963).PubMedGoogle Scholar
  30. 30.
    Niessing, K., Vogell, W.: Elektronenmikroskopische Untesuchungen über Strukturveränderungen in der Hirnrinde beim Ödem und ihre Bedeutung für das Problem der Grundsubstanz.Z. Zellforsch. 52, 216 (1960).PubMedGoogle Scholar
  31. 31.
    Olsen, N. S., Klein, J. R.:Res. Publ. Ass. nerv. ment. dis. 24, 226 (1946). Cit. R. G. Spector: Enzyme chemistry of anoxic brain injury. C. W. M. Adams: Neurohistochemistry. Elsevier, Amsterdam 1965.Google Scholar
  32. 32.
    Peters, A.: Plasma membrane contacts in the central nervous system.J. Anat. 96, 237 (1962).PubMedGoogle Scholar
  33. 33.
    Prill, A.: Die neurologische Symptomatologie der Niereninsuffizienz. Springer, Berlin 1969.Google Scholar
  34. 34.
    Reed, D. J., Woodbury, D. M.: Effects of hypertonic urea on cerebrospinal fluid pressure and brain volume.J. Physiol. 164, 252 (1962).PubMedGoogle Scholar
  35. 35.
    Reed, D. J., Woodbury, D. M.: Effect of urea and acetazolamide on brain volume and cerebrospinal fluid pressure.J. Physiol. 164, 265 (1962).PubMedGoogle Scholar
  36. 36.
    Richter, D.: Metabolism of the nervous system Pergamon Press, London 1957.Google Scholar
  37. 37.
    Richter, D.: CIBA foundation symposium on somatic stability in the newly born. Churchill, London 1961.Google Scholar
  38. 38.
    Robins, E., Smith, D. E., Daesch, G. E., Payne, K. E.: The validation of the quantitative histochemical method for use on post-mortem material. The effects of fever and uremia.J. Neurochem., 3, 19 (1958).PubMedGoogle Scholar
  39. 39.
    Scheinberg, P.: Effects of uremia on cerebral blood flow and metabolism.Neurology (Minneap.)4, 101 (1954).PubMedGoogle Scholar
  40. 40.
    Schneider, M.: The metabolism of the brain in ischaemia and hypothermia. In: D. Richter: Metabolism of the nervous system. Pergamon Press, London 1957.Google Scholar
  41. 41.
    Schoolar, J. C., Barlow, C. F., Roth, L. J.: The penetration of carbon-14-urea into cerebrospinal fluid and various areas of the cat brain.J. Neuropath. exp. Neur. 19 216 (1960).PubMedGoogle Scholar
  42. 42.
    Schreiner, G. E.: Mental and personality changes in the uremic syndrome.Med. Ann. Distr. of Columbia 28, 316 (1959).Google Scholar
  43. 43.
    Schultz, R. L.: Macroglial identification in electron micrographs.J. comp. Neurol. 122, 281 (1964).PubMedGoogle Scholar
  44. 44.
    Schwartz, A., Bachelard, H. S., McIlwain, H.: The sodium stimulated adenosine triphosphatase activity and other properties of cerebral microsomal fractions and subfractions.Biochem. J. 84, 626 (1962).PubMedGoogle Scholar
  45. 45.
    Spector, R. G.: Enzyme chemistry of anoxic brain injury. In: C. W. M. Adams: Neurohistochemistry. Elsevier, Amsterdam 1965.Google Scholar
  46. 46.
    Szegedy, L.: Vaskuläre Schädigung des Gehirns bei Urämie.Psychiat. Neurol. 146, 116 (1963).Google Scholar
  47. 47.
    Szegedy, L.: The influence of hemodialysis treatment on the injuries of the central nervous system in uremia.Acta Neurol. scand. 42, 105 (1966).PubMedGoogle Scholar
  48. 48.
    Szegedy, L., Berényi, M., Csata, S.: Complications in the nervous system under the influence of hemodialysis, attributable to changes of the serum-liquor electrolyte and pH levels.Europ. Neur. 1, 247 (1968).Google Scholar
  49. 49.
    Takamatsu, H.:Trans. Jap. path. Soc. 29, 492 (1939). Cit. Gy. Kiszely, Z. Pósalaky: Mikrotechnische und histochemische Untersuchungsmethoden. Akadémiai Kiadó, Budapest, 1964.Google Scholar
  50. 50.
    Torack, R. M.: Electron histochemistry of the nervous system. In: C. W. M. Adams: Neurohistochemistry Elsevier, Amsterdam 1965.Google Scholar
  51. 51.
    Torack, R. M., Barnett, R. J.: The fine structural localisation of nucleoside phosphatase activity in the blood-brain barrier.J. Neuropath. exp. Neur. 23, 46 (1964).PubMedGoogle Scholar
  52. 52.
    Wachstein, M., Meisel, E.: Histochemistry of hepatic phosphatases at a physiologic pH.Amer. J. clin. Path. 27, 13 (1957).Google Scholar
  53. 53.
    Wilke, G., Klees, E., Mochel, R.: Gehirnveränderungen bei Schwangerschaftstoxicosen.Dtsch. Z. Nervenheilk, 172, 377 (1955).Google Scholar

Copyright information

© Akadémiai Kiadó 1971

Authors and Affiliations

  • L. Szegedy
    • 1
    • 2
  • M. Csellár
    • 1
    • 2
  • F. Rényi-Vámos
    • 1
    • 2
  1. 1.Second Department of Neurology and PsychiatrySemmelweis Medical UniversityBudapest
  2. 2.Department of UrologySemmelweis Medical UniversityBudapest

Personalised recommendations