International Journal of Thermophysics

, Volume 16, Issue 5, pp 1213–1224 | Cite as

Inter- and intradiffusion in liquid mixtures of methane andn-decane

  • D. K. Dysthe
  • B. Hafskjold


The interdiffusion coefficient,D12, has been measured by Mach-Zehnder interferometry for liquid mixtures of methane andn-decane at 303 K. The mole fraction of methane was from 0.11 to 0.96 and the pressure was from 30 to 60 MPa. This includes measurements in the critical region, the critical locus being approached from supercritical pressures to within 0.4 MPa. The accuracy inD12 is estimated to be from 3 to 10%, depending on the composition. Our data are compared with the Sigmund correlation, which is widely used to estimate diffusion coefficients in hydrocarbons at high pressures. The deviation between estimate and measurement is one order of magnitude for some of the states. We have also compared with a more recent correlation used by Erkey, but this one is not found to be applicable to the compositions studied in the present work. Our data were related to recently measured intradiffusion coefficients,D1 andD2, at the same state points. On this basis, we have evaluated different mixing rules for obtaining the interdiffusion coefficient from intradiffusion coefficients, both close to and away from the critical region. It is found that the so-called Darken and Adamson relations have the right qualitative behavior.

Key words

alkanes diffusion high pressure mixtures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Matthews and A. Akgerman,AIChE J. 33:881 (1987).Google Scholar
  2. 2.
    M. A. Matthews, J. B. Rodden, and A. Akgerman,J. Chem. Eng. 32:319 (1987).Google Scholar
  3. 3.
    C. Erkey and A. Akgerman,AIChE J. 35:443 (1989).Google Scholar
  4. 4.
    A. Greiner-Schmid, S. Wappman, M. Has, and H.-D. Lüdemann,J. Chem. Phys. 94:5643 (1991).Google Scholar
  5. 5.
    F. Bachl and H.-D. Lüdemann,Physica 139/140B:100 (1986).Google Scholar
  6. 6.
    F. Bachl and H.-D. Lüdemann,Z. Naturforsch. 41a:963 (1986).Google Scholar
  7. 7.
    F. Bachl and H.-D. Lüdemann,High Press. Res. 6:91 (1990).Google Scholar
  8. 8.
    T. Vardag, F. Bachl, S. Wappmann, and H.-D. Lüdemann,Ber. Buns. Phys. Chem. 94:336 (1990).Google Scholar
  9. 9.
    H. H. Reamer, J. B. Opfell, and B. H. Sage,Ind. Eng. Chem. 48:275 (1956).Google Scholar
  10. 10.
    H. H. Reamer, C. H. Duffy, and B. H. Sage,Ind. Eng. Chem. 48:282 (1956).Google Scholar
  11. 11.
    K. R. Christoffersen, C. H. Whitson, F. da Silva, and A. J. Haldoupis, presented at the Fourth North Sea Chalk Symposium.Google Scholar
  12. 12.
    M. Helbæk,Diffusion Coefficient Measurements in Gas/Oil Mixtures at High Pressure by Nuclear Magnetic Resonance, (Norwegian Institute of Technology, Trondheim, 1992).Google Scholar
  13. 13.
    H. J. V. Tyrrell and K. R. Harris,Diffusion in Liquids, Butterworths Monographs in Chemistry (Butterworths, London, 1984), pp. 349–368.Google Scholar
  14. 14.
    A. W. Adamson,J. Phys. Chem. 58:514 (1954).Google Scholar
  15. 15.
    L. S. Darken,Am. Inst. Min. Met. Eng. Trans. 175:184 (1948).Google Scholar
  16. 16.
    H. J. V. Tyrrell,J. Chem. Soc. 1599 (1963).Google Scholar
  17. 17.
    H. G. Hertz and H. Leiter,Z. Phys. Chem. Neue Folge 133:45 (1982).Google Scholar
  18. 18.
    T. M. Bender and R. Pecora,J. Phys. Chem. 93:2614 (1989).Google Scholar
  19. 19.
    H. A. Al-Chalabi and E. McLaughlin,Mol. Phys. 19:703 (1970).Google Scholar
  20. 20.
    S. Killie, B. Hafskjold, O. Borgen, S. K. Ratkje, and E. Hovde,AIChE J. 37:142 (1991).Google Scholar
  21. 21.
    D. K. Dysthe, B. Hafskjold, J. Breer, and D. Čejka,J. Phys. Chem. (in press).Google Scholar
  22. 22.
    J. A. Rard and D. G. Miller,J. Sol. Chem. 8:701 (1979).Google Scholar
  23. 23.
    M. A. Anisimov and S. B. Kiselev,Int. J. Thermophys. 13:873 (1992).Google Scholar
  24. 24.
    S. B. Kiselev and V. D. Kulikov,Int. J Thermophys. 15:283 (1994)Google Scholar
  25. 25.
    J. Luettmer-Strathmann, Ph.D. thesis (University of Maryland, College Park, 1994).Google Scholar
  26. 26.
    H. Knapp, R. Doring, L. Oellrich, U. Plocker, and J. M. Prausnitz,Vapor-Liquid Equilibria for Mixtures of Low Boiling Substances (DECHEMA, Frankfurt, 1982).Google Scholar
  27. 27.
    H. H. Reamer, R. H. Olds, B. H. Sage, and W. N. Lacey,Ind. Eng. Chem. 34:12 (1942).Google Scholar
  28. 28.
    W. M. Rutherford and J. G. Roof,J. Phys. Chem. 63:1506 (1959).Google Scholar
  29. 29.
    K. R. Harris,Physica 94A:448 (1978).Google Scholar
  30. 30.
    P. M. Sigmund,J. Can. Petr. Tech. Apr.–June:48 (1976).Google Scholar
  31. 31.
    P. M. Sigmund,J. Can. Petr. Tech. July–Sept.:53 (1976).Google Scholar
  32. 32.
    E. V. da Silva and P. Belery, SPE Paper No. 19672:429 (1989).Google Scholar
  33. 33.
    C. Erkey and A. Ackgerman,AIChE J. 35:1907 (1989).Google Scholar
  34. 34.
    C. Erkey, J. B. Rodden, and A. Akgerman,Can. J. Chem. Eng. 68:661 (1990).Google Scholar
  35. 35.
    M. J. Assael, E. Charitidou, J. H. Dymond, and M. Papadaki,Int. J. Thermophys. 13:237 (1992).Google Scholar
  36. 36.
    M. J. Assael, J. H. Dymond, M. Papadaki, and P. M. Patterson,Int. J. Thermophys. 13:269 (1992).Google Scholar
  37. 37.
    M. J. Assael, J. H. Dymond, M. Papadaki, and P. M. Patterson,Int. J. Thermophys. 13:659 (1992).Google Scholar
  38. 38.
    M. J. Assael, J. H. Dymond, and P. M. Patterson,Int. J. Thermophys. 13:729 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • D. K. Dysthe
    • 1
  • B. Hafskjold
    • 1
  1. 1.Department of Physical Chemistry, Norwegian Institute of TechnologyThe University of TrondheimTrondheimNorway

Personalised recommendations