Skip to main content
Log in

Inter- and intradiffusion in liquid mixtures of methane andn-decane

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The interdiffusion coefficient,D 12, has been measured by Mach-Zehnder interferometry for liquid mixtures of methane andn-decane at 303 K. The mole fraction of methane was from 0.11 to 0.96 and the pressure was from 30 to 60 MPa. This includes measurements in the critical region, the critical locus being approached from supercritical pressures to within 0.4 MPa. The accuracy inD 12 is estimated to be from 3 to 10%, depending on the composition. Our data are compared with the Sigmund correlation, which is widely used to estimate diffusion coefficients in hydrocarbons at high pressures. The deviation between estimate and measurement is one order of magnitude for some of the states. We have also compared with a more recent correlation used by Erkey, but this one is not found to be applicable to the compositions studied in the present work. Our data were related to recently measured intradiffusion coefficients,D 1 andD 2, at the same state points. On this basis, we have evaluated different mixing rules for obtaining the interdiffusion coefficient from intradiffusion coefficients, both close to and away from the critical region. It is found that the so-called Darken and Adamson relations have the right qualitative behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. A. Matthews and A. Akgerman,AIChE J. 33:881 (1987).

    Google Scholar 

  2. M. A. Matthews, J. B. Rodden, and A. Akgerman,J. Chem. Eng. 32:319 (1987).

    Google Scholar 

  3. C. Erkey and A. Akgerman,AIChE J. 35:443 (1989).

    Google Scholar 

  4. A. Greiner-Schmid, S. Wappman, M. Has, and H.-D. Lüdemann,J. Chem. Phys. 94:5643 (1991).

    Google Scholar 

  5. F. Bachl and H.-D. Lüdemann,Physica 139/140B:100 (1986).

    Google Scholar 

  6. F. Bachl and H.-D. Lüdemann,Z. Naturforsch. 41a:963 (1986).

    Google Scholar 

  7. F. Bachl and H.-D. Lüdemann,High Press. Res. 6:91 (1990).

    Google Scholar 

  8. T. Vardag, F. Bachl, S. Wappmann, and H.-D. Lüdemann,Ber. Buns. Phys. Chem. 94:336 (1990).

    Google Scholar 

  9. H. H. Reamer, J. B. Opfell, and B. H. Sage,Ind. Eng. Chem. 48:275 (1956).

    Google Scholar 

  10. H. H. Reamer, C. H. Duffy, and B. H. Sage,Ind. Eng. Chem. 48:282 (1956).

    Google Scholar 

  11. K. R. Christoffersen, C. H. Whitson, F. da Silva, and A. J. Haldoupis, presented at the Fourth North Sea Chalk Symposium.

  12. M. Helbæk,Diffusion Coefficient Measurements in Gas/Oil Mixtures at High Pressure by Nuclear Magnetic Resonance, Dr.ing.-thesis (Norwegian Institute of Technology, Trondheim, 1992).

    Google Scholar 

  13. H. J. V. Tyrrell and K. R. Harris,Diffusion in Liquids, Butterworths Monographs in Chemistry (Butterworths, London, 1984), pp. 349–368.

    Google Scholar 

  14. A. W. Adamson,J. Phys. Chem. 58:514 (1954).

    Google Scholar 

  15. L. S. Darken,Am. Inst. Min. Met. Eng. Trans. 175:184 (1948).

    Google Scholar 

  16. H. J. V. Tyrrell,J. Chem. Soc. 1599 (1963).

  17. H. G. Hertz and H. Leiter,Z. Phys. Chem. Neue Folge 133:45 (1982).

    Google Scholar 

  18. T. M. Bender and R. Pecora,J. Phys. Chem. 93:2614 (1989).

    Google Scholar 

  19. H. A. Al-Chalabi and E. McLaughlin,Mol. Phys. 19:703 (1970).

    Google Scholar 

  20. S. Killie, B. Hafskjold, O. Borgen, S. K. Ratkje, and E. Hovde,AIChE J. 37:142 (1991).

    Google Scholar 

  21. D. K. Dysthe, B. Hafskjold, J. Breer, and D. Čejka,J. Phys. Chem. (in press).

  22. J. A. Rard and D. G. Miller,J. Sol. Chem. 8:701 (1979).

    Google Scholar 

  23. M. A. Anisimov and S. B. Kiselev,Int. J. Thermophys. 13:873 (1992).

    Google Scholar 

  24. S. B. Kiselev and V. D. Kulikov,Int. J Thermophys. 15:283 (1994)

    Google Scholar 

  25. J. Luettmer-Strathmann, Ph.D. thesis (University of Maryland, College Park, 1994).

    Google Scholar 

  26. H. Knapp, R. Doring, L. Oellrich, U. Plocker, and J. M. Prausnitz,Vapor-Liquid Equilibria for Mixtures of Low Boiling Substances (DECHEMA, Frankfurt, 1982).

    Google Scholar 

  27. H. H. Reamer, R. H. Olds, B. H. Sage, and W. N. Lacey,Ind. Eng. Chem. 34:12 (1942).

    Google Scholar 

  28. W. M. Rutherford and J. G. Roof,J. Phys. Chem. 63:1506 (1959).

    Google Scholar 

  29. K. R. Harris,Physica 94A:448 (1978).

    Google Scholar 

  30. P. M. Sigmund,J. Can. Petr. Tech. Apr.–June:48 (1976).

    Google Scholar 

  31. P. M. Sigmund,J. Can. Petr. Tech. July–Sept.:53 (1976).

    Google Scholar 

  32. E. V. da Silva and P. Belery, SPE Paper No. 19672:429 (1989).

  33. C. Erkey and A. Ackgerman,AIChE J. 35:1907 (1989).

    Google Scholar 

  34. C. Erkey, J. B. Rodden, and A. Akgerman,Can. J. Chem. Eng. 68:661 (1990).

    Google Scholar 

  35. M. J. Assael, E. Charitidou, J. H. Dymond, and M. Papadaki,Int. J. Thermophys. 13:237 (1992).

    Google Scholar 

  36. M. J. Assael, J. H. Dymond, M. Papadaki, and P. M. Patterson,Int. J. Thermophys. 13:269 (1992).

    Google Scholar 

  37. M. J. Assael, J. H. Dymond, M. Papadaki, and P. M. Patterson,Int. J. Thermophys. 13:659 (1992).

    Google Scholar 

  38. M. J. Assael, J. H. Dymond, and P. M. Patterson,Int. J. Thermophys. 13:729 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dysthe, D.K., Hafskjold, B. Inter- and intradiffusion in liquid mixtures of methane andn-decane. Int J Thermophys 16, 1213–1224 (1995). https://doi.org/10.1007/BF02081289

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02081289

Key words

Navigation