International Journal of Thermophysics

, Volume 16, Issue 5, pp 1109–1117 | Cite as

The study of anisotropically shaped micelles subjected to shear flow by small-angle neutron scattering

  • J. Penfold
  • E. Staples
  • A. Khan Lhodi
  • I. Tucker
Article

Abstract

The development of Couette shear-flow cells for use with small-angle neutron scattering (SANS) has provided the opportunity for the morphology of solutions of anisotropically shaped surfactant micelles to be probed in more detail and for the effects of shear on such structures to be explored. The effects of finite concentration (hindered rotation and interactions), flexibility, and shear-induced changes/structures are described for elongated micelles in their dilute phase (for a range of ionic, nonionic, and mixed ionic-nonionic micelles). Some recent measurements on nonionic and mixed ionic-nonionic micelles demonstrate that SANS can provide a vital insight into the rheological properties and morphology of micellar solutions over a wider region of their complex phase diagrams.

Key words

Anisotropically shaped micelles complex fluids Couette shear flow mixed surfactants shear-induced structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. G. Cummins, E. Staples, B. Millen, and J. Penfold,J. Meas. Sci. Technol. 1:179 (1990).Google Scholar
  2. 2.
    P. Lindner and R. C. Oberthur,Rev. Phys. Appl. 19:759 (1984).Google Scholar
  3. 3.
    J. B. Hayter and J. Penfold,J. Phys. Chem. 88:4589 (1984).Google Scholar
  4. 4.
    J. Penfold, E. Staples, and P. G. Cummins,Adv. Coll. Int. Sci. 34:451 (1991).Google Scholar
  5. 5.
    P. G. Cummins, J. Penfold, and E. Staples,Langmuir 8:31 (1992).Google Scholar
  6. 6.
    R. K. Heenan, R. Osborn, H.B. Stanley, D. F. R. Mildner, and M. J. Furusaka, submitted for publication.Google Scholar
  7. 7.
    A. Peterlin and H. Stuart, inHand und Jahrbuck der Chemischen Physik, (Akad Verlag Becker und Erler Kom-Ges, Leipzig, 1943), p. 44.Google Scholar
  8. 8.
    P. G. Cummins, E. Staples, J.B. Hayter, and J. Penfold,J. Chem. Soc. Faraday Trans. 183:2773 (1987).Google Scholar
  9. 9.
    M. E. Cates and S. J. Candau,J. Phys. Condens Matt. 2:6869 (1990).Google Scholar
  10. 10.
    J. Marignan, J. Appell, P. Basseraux, G. Porte, and R. P. May,J. Phys. 50:3553 (1989).Google Scholar
  11. 11.
    E. Staples, P. G. Cummins, F. Leng, and J. Penfold,Chem. Phys. Lett. 149:191 (1988).Google Scholar
  12. 12.
    H. G. Jerrard,Chem. Rev. 89:345 (1959).Google Scholar
  13. 13.
    B. Weyerich, B. D'Aguanno, E. Canessa, and R. Klein,Faraday Discuss. Chem. Soc. 90:245 (1990).Google Scholar
  14. 14.
    J. F. Berret, D. C. Roux, G. Porte, and P. Lindner,Europhys. Lett. 25:521 (1994).Google Scholar
  15. 15.
    O. Diat and D. C. Roux,J. Phys. 3:9 (1993).Google Scholar
  16. 16.
    A. Khan Lhodi, E. Staples, I. Tucker, and J. Penfold, in preparation.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • J. Penfold
    • 1
  • E. Staples
    • 2
  • A. Khan Lhodi
    • 2
  • I. Tucker
    • 2
  1. 1.Rutherford-Appleton LaboratoryChilton, DidcotUK
  2. 2.Unilever Research, Port Sunlight LaboratoryBebingtonUK

Personalised recommendations