Skip to main content
Log in

Investigations of the turnover of the putative cellulose-synthesizing particle “rosettes” within the plasma membrane ofFunaria hygrometrica protonema cells

II. Rosette structure and the effects of cycloheximide, actinomycin D, 2.6-dichlorobenzonitrile, biofluor, heat shock, and plasmolysis

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

In youngFunaria protonemata the influence of various inhibitors and treatments on cell elongation, fine-structure, and particle rosettes within the plasma membrane, putative parts of cellulose synthase complexes, was investigated. Cycloheximide (3×10−5M) inhibited growth, reduced the number of rosettes and evened the gradient of rosette distribution at the beginning of treatment. The cell fine-structure was unaffected. Actinomycin D (10−5M and 10−4) caused an initial but transient decrease in rosette number. Alterations in cell elongation and fine-structure have not been observed. Application of 2.6-dichlorobenzonitrile (10−5 M) for some minutes reduced the number of rosettes remarkably, while cell elongation seemed to be normal after the filaments had been transferred back to normal medium. An incubation of 2 h or longer stopped growth and caused cells to burst. The number of rosettes then rose to about 50% of the control values. When applied for 7 h biofluor (5×10−4 M) promoted growth slightly, but generally it retarded it when used for a longer time. It did not markedly affect the number of rosettes. A short heat stock stopped elongation, caused the disappearance of rosettes and affected the structure of the mitochondria and of the Golgi apparatus. Plasmolysed cells did not grow and, initially, did not have rosettes. At reduced turgor, wider cells are formed. Freeze fracturing under UHV conditions and shadowing at very low specimen temperature revealed a small, central depression in the 8 nm rosette particles, suggesting that they are composed of subunits. Our results provide further evidence that the rosettes are parts of the cellulose synthase complexes. Their existence clearly depends on protein synthesis and on the constitution of the plasma membrane, but not on cellulose crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CHI:

cycloheximide

AD:

actinomycin D

DCB:

2.6-dichlorobenzonitrile

PF:

protoplasmic fracture face

EF:

extraplasmatic fracture face

TC:

terminal complex

UHV:

ultra high vacuum

References

  • Abeles FB (1968) Role of RNA and protein synthesis in abscission. Plant Physiol 43: 1577–1586

    Google Scholar 

  • Benziman M, Haigler CH, Brown RM, White AR, Cooper KM (1980) Cellulose biogenesis: polymerization and crystallization are coupled processes inAcetobacter xylinum. Proc Natl Acad Sci USA 77: 6678–6682

    Google Scholar 

  • Branton D, Bullivant S, Gilula NB, Karnovsky MJ, Moor H, Mühlethaler K, Northcote DH, Packer L, Satir B, Satir P, Speth V, Staehelin LA, Steere RL, Weinstein RS (1975) Freezeetching nomenclature. Science 190: 54–56

    PubMed  Google Scholar 

  • Burgoyne RD, Cheek TR (1987) Role of fodrin in secretion. Nature 326: 448

    PubMed  Google Scholar 

  • Buron MJ, Garcia-Herdugo G (1983) Experimental analysis of cytokinesis: comparison of inhibition induced by 2.6-dichlorbenzonitrile and caffeine. Protoplasma 118: 192–198

    Google Scholar 

  • Caldwell CR, Haug A (1981) Temperature dependence of the barley root plasma membrane-bound Ca2+- and Mg2+-dependent ATPase. Physiol Plant 53: 117–124

    Google Scholar 

  • Delmer DP (1987 a) Cellulose biosynthesis. Ann Rev Plant Physiol 38: 259–290

    Google Scholar 

  • - (1987b) The biochemistry of cellulose biosynthesis. TAPPI Proc Int Dis Pulps Conference, Technology Park/Atlanta, Atlanta, GA, pp 113–116

  • Gale EF, Cundliffe E, Reynolds PE, Richmond MM, Warning MJ (1971) The molecular basis of antibiotics. Wiley, London, pp 121–172

    Google Scholar 

  • Giddings TH, Brower DL, Staehelin LA (1980) Visualization of particle complexes in the plasma membrane ofMicrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary walls. J Cell Biol 84: 327–339

    PubMed  Google Scholar 

  • —, Staehelin LA (1988) Spatial relationship between microtubules and plasma membrane rosettes during the deposition of primary wall microfibrils inClosterium sp. Planta 173: 22–30

    Google Scholar 

  • Goldberg JH, Friedmann PA (1971) Antibiotics and nucleid acid synthesis and function. In: Milich E (ed) Drugs and cell regulation. Academic Press, New York, pp 1–119

    Google Scholar 

  • Gross H, Müller T, Wildhaber I, Winkler H (1985) High resolution metal replication, quantified by image processing of periodic test specimens. Ultramicroscopy 16: 287–304

    Google Scholar 

  • Haigler CH, Benziman M (1982) Biogenesis of cellulose I microfibrils occurs by cell-directed self-assembly inAcetobacter xylinum. In: Brown RM jr (ed) Cellulose and other natural polymer systems. Plenum Press, London New York, pp 273–295

    Google Scholar 

  • —, Haigler CH, Brown RM jr (1986) Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells ofZinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma 134: 111–120

    Google Scholar 

  • Herth W (1985) Plant cell wall formation. In: Robards AW (ed) Botanical microscopy. Oxford University Press, Oxford, pp 285–310

    Google Scholar 

  • — (1987) Effects of 2.6.-DCB on plasma membrane rosette of wheat root cells. Naturwissenschaften 74: 556–557

    Google Scholar 

  • - Hausser I (1984) Chitin and cellulose fibrillogenesis in vitro and their experimental alteration. In: Drugger WM, Barnicki-Garcia S (eds) Structure, function and biogenesis of plant cell walls. Proc VII Ann Symp Bot Univ California Riverside Am Soc Plant Physiol, Rockeville, MD, pp 89–119

  • —, Schnepf E (1980) The fluorochrome, Calcofluor White, binds oriented to structural polysaccharide fibrils. Protoplasma 105: 129–133

    Google Scholar 

  • Itoh T, Brown RM jr (1984) The assembly of cellulose microfibrils inValonia macrophysa Kütz. Planta 160: 372–381

    Google Scholar 

  • —, Legge RL, Brown RM jr (1986) The effect of selected inhibitors on cellulose microfibril assembly inBoergesenia forbesii (Chlorophyta) protoplasts. J Phycol 22: 224–233

    Google Scholar 

  • Kiermayer O (1964) Untersuchungen über die Morphogenese und Zellwandbildung beiMicrasterias denticulata Breb. Protoplasma 59: 76–132

    Google Scholar 

  • —, Meindl U (1980) Elektronenmikroskopische Untersuchungen zum Problem der Cytomorphogenese vonMicrasterias denticulata Breb. II. Einfluß von Cycloheximid auf die Bildung und die Ultrastruktur der Primärwand. Protoplasma 103: 169–177

    Google Scholar 

  • Kroh M, Knuimann B (1985) Exocytosis in non-plasmolyzed and plasmolyzed tobacco pollen tubes. Planta 166: 287–299

    Google Scholar 

  • — —, Kudlicka K (1983) Effects of reduced turgor pressure on tobacco pollen tubes. In: Erdelska O, Ciamporova M, Lux A, Pret'ova A, Tuppy J (eds) Fertilization and embryogenesis in ovulated plants. VEDA, Bratislava, pp 121–124

    Google Scholar 

  • Kudlicka K, Kroh M, Sassen MMA (1981) Cell wall regeneration in plasmolyzed pollen tubes of lily and tobacco. Acta Bot Neerl 30: 316–317

    Google Scholar 

  • Maeda H, Ishida M (1967) Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. J Biochem 62: 276–278

    PubMed  Google Scholar 

  • Michea-Hamzehpour M, Grange F, TonThat T, Turian G (1980) Heat-induced changes in respiratory pathways and mitochondrial structure during microcycle conidiation ofNeurospora crassa. Arch Microbiol 125: 53–58

    PubMed  Google Scholar 

  • Mizuta S, Roberts E, Brown RM jr (1988) Formation, structure and function of a new cellulose synthesizing complex inVaucheria. Tenth Cellulose Conference, Syracuse, Abstract p 33

  • Montezinos D, Delmer DP (1980) Characterization of inhibitors of cellulose synthesis in cotton fibres. Planta 148: 305–311

    Google Scholar 

  • Moreland DE, Hussey GG, Farmer FS (1974) Comparative effects of dichlobenil and its phenolic alteration products on photophosphorylation and oxidativ phosphorylation. Pestic Biochem Physiol 4: 356–364

    Google Scholar 

  • Noguchi T, Ueda K (1979) Effects of cycloheximide on the ultrastructure of cytoplasm in cells of a green alga,Micrasterias crux melitensis. Biol Cell 35: 103–110

    Google Scholar 

  • Picton JM, Steer MW (1983) Membrane recycling and the control of secretory activity in pollen tubes. J Cell Sci 63: 303–310

    PubMed  Google Scholar 

  • Poo M, Cone RA (1974) Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature 247: 438

    PubMed  Google Scholar 

  • Quader H (1983) Morphology and movement of cellulose synthesizing (terminal) complexes inOocystis solitaria: evidence that microfibril assembly is the motive force. Eur J Cell Biol 32: 174–177

    PubMed  Google Scholar 

  • Rattee JD, Breuer MM (1974) The physical chemistry of dye adsorption. Academic Press, New York, pp 180–182

    Google Scholar 

  • Reis D, Roland JC, Vian B (1985) Morphogenesis of twisted cell wall: chronology following an osmotic shock. Protoplasma 126: 36–46

    Google Scholar 

  • Robinson DG, Quader H (1981) Structure, synthesis and orientation of microfibrils. IX. A freeze-fracture investigation of theOocystis plasma membrane after inhibitor treatments. Eur J Cell Biol 25: 278–288

    PubMed  Google Scholar 

  • Rudolph U (1987) Occurrence of rosettes in the membrane of the ER of youngFunaria hygrometrica protonemata. Naturwissenschaften 74: 439

    Google Scholar 

  • —, Schnepf E (1988) Investigations of the turnover of the putative cellulose-synthesizing particle “rosettes” within the plasmamembrane ofFunaria hygrometrica protonema cells. I. Effects of Monensin and Cytochalasin B. Protoplasma 143: 63–73

    Google Scholar 

  • Sachs MM, Ho T-HD (1986) Alteration of gene expression during environmental stress in plants. Annu Rev Plant Physiol 37: 363–376

    Google Scholar 

  • Schmiedel G (1978) Zellpolarität und Verzweigung im Caulonema vonFunaria hygrometrica Sibth. Thesis, University of Heidelberg

  • Schmitt U (1982) Licht- und elektronenmikroskopische Untersuchungen über die cytologischen Auswirkungen von Hitzeschocks beiPoterioochromonas malhamensis undFunaria-Caulonemen. Thesis, University of Heidelberg

  • Schnepf E, Deichgräber G, Bopp M (1986) Growth, cell wall formation and differentiation in the protonema of the mossFunaria hygrometrica: effects of plasmolysis on the developmental programm and its expression. Protoplasma 133: 50–65

    Google Scholar 

  • — —, Herth W (1982) Development of cell wall appendages inAcanthosphaera zachariasi (Chlorococcales): kinetics, site of cellulose synthesis and of microfibril assembly and barb formation. Protoplasma 110: 203–214

    Google Scholar 

  • —, Hrdina B, Lehne A (1982) Spore germination, development of the microtubule system and protonema cell morphogenesis in the moss,Funaria hygrometrica. Effects of inhibitors and of growth substances. Biochem Physiol Pflanzen 177: 461–482

    Google Scholar 

  • —, Witte O, Rudolph U, Deichgräber G, Reiss H-D (1985) Tip cell growth and the frequency and distribution of particle rosettes in the plasmalemma: experimental studies inFunaria protonema cells. Protoplasma 127: 222–229

    Google Scholar 

  • Schröter K, Sievers A (1971) Wirkung der Turgorreduktion auf den Golgi-Apparat und die Bildung der Zellwand bei Wurzelhaaren. Protoplasma 72: 203–211

    Google Scholar 

  • Sobell HM (1974) How actinomycin binds to DNA. Sci Am 231: 82–91

    PubMed  Google Scholar 

  • Venverloo CJ, Goosen-de Roo L, Van Sponsen PC (1984) Cell division inNautilocalyx explants. III. Effects of 2.6-dichlorbenzonitrile on phragmosome, band of microtubules and cytokinesis. J Plant Physiol 166: 225–234

    Google Scholar 

  • Verloop A, Nimmo WB (1969) Absorption, translocation and metabolism of dichlobenil in bean seedlings. Weed Res 9: 357–370

    Google Scholar 

  • — — (1970) Transport and metabolism of dichlobenil in wheat and rice seedlings. Weed Res 10: 59–64

    Google Scholar 

  • Volger H, Santarius KA (1981) Release of membrane proteins in relation to heat injury of spinach chloroplasts. Physiol Plant 51: 195–200

    Google Scholar 

  • Wettstein FO, Noll H, Penmann S (1964) Effect of cycloheximide on ribosomal aggregates engaged in protein synthesis in vitro. Biochim Biophys 87: 525–528

    Google Scholar 

  • Willison JHM, Brown RM jr (1978) Cell wall structure and deposition inGlaucocystis. J Cell Biol 77: 103–119

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudolph, U., Gross, H. & Schnepf, E. Investigations of the turnover of the putative cellulose-synthesizing particle “rosettes” within the plasma membrane ofFunaria hygrometrica protonema cells. Protoplasma 148, 57–69 (1989). https://doi.org/10.1007/BF02079323

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02079323

Keywords

Navigation