Journal of Mammalian Evolution

, Volume 3, Issue 4, pp 285–314 | Cite as

Chiropteran vomeronasal complex and the interfamilial relationships of bats

  • John R. Wible
  • Kunwar P. Bhatnagar


Within the extant orders of living mammals, the distribution of the vomeronasal organ (VNO) and associated structures is very stable, being universally present in the vast majority or universally absent in cetaceans and sirenians. Chiroptera is the most noteworthy exception, with variation in the absence or presence of the vomeronasal complex occurring even at the species level in some instances. The VNO and/or its component structures, such as the accessory olfactory bulb, were studied in serially sectioned snouts and brains from 114 genera and 292 species representing all extant chiropteran families except Myzopodidae and Antrozoidae. Taxa were scored for the following characters: (1) degree of formation of the vomeronasal epithelial tube, (2) shape of the vomeronasal cartilage, (3) occurrence of the nasopalatine duct, and (4) occurrence of the accessory olfactory bulb. To reconstruct the evolutionary history of the bat vomeronasal complex, the distributions of these four characters were mapped, using the computer program MacClade, onto chiropteran phylogenies in the literature derived from other data sets. In all phylogenies, these four characters exhibit a high degree of homoplasy, only part of which is accounted for by several polymorphic taxa. However, perhaps the most remarkable result is that in the most parsimonious solutions the absence of the vomeronasal epithelial tube and accessory olfactory bulb is identified as primitive for Chiroptera, with both structures reevolving numerous times: such a scenario would be unique to bats among mammals. An alternative, though less parsimonious interpretation, which does not require reevolution of this very complex system, is that a well-developed vomeronasal epithelial tube is primitive for Chiroptera, as in nearly all other orders of mammals, but has been reduced or lost in the majority of families. Explication of the peculiar evolutionary history of the vomeronasal system in bats awaits studies on the adult morphology in the more than 630 species not yet examined and, in particular, on ontogeny, which to date is known for only a handful of taxa.

Key Words

vomeronasal organ Jacobson's organ Chiroptera phylogeny accessory olfactory bulb 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adams, D. R. (1992). Fine structure of the vomeronasal and septal olfactory epithelia and of glandular structures.Microsc. Res. Tech. 23: 86–97.PubMedGoogle Scholar
  2. Allard, M. W., McNiff, B. E., and Miyamoto, M. M. (1996). Support for interordinal eutherian relationships with an emphasis on primates and their archontan relatives.Mol. Phylogenet. Evol. 5: 78–88.PubMedGoogle Scholar
  3. Baker, R. J., Hood, C. S., and Honeycutt, R. L. (1989). Phylogenetic relationships and classification of the higher categories of the New World bat family Phyllostomidae.Syst. Zool. 38: 228–238.Google Scholar
  4. Baron, G., Stephan, H., and Frahm, H. D. (1996).Comparative Neurobiology in Chiroptera, Vols, I, II, III. Birkhäuser Verlag, Basel.Google Scholar
  5. Bhatnagar, K. P. (1980). The chiropteran vomeronasal organ: Its relevance to the phylogeny of bats. In:Proceedings Fifth International Bat Research Conference, D. E. Wilson and A. L. Gardner, eds., pp. 289–315, Texas Tech Press, Lubbock.Google Scholar
  6. Bhatnagar, K. P. (1985). Comparative morphology of the vomeronasal receptor-free epithelium of some phyllostomid bats: Light microscopic observations.Aust. J. Mammal. 8: 265–270.Google Scholar
  7. Bhatnagar, K. P. (1988). Anatomy. In:Natural History of Vampire Bats, A. M. Greenhall and U. Schmidt, eds., pp. 41–70, CRC Press, Boca Raton, FL.Google Scholar
  8. Bhatnagar, K. P., and Kallen, F. C. (1974). Morphology of the nasal cavities and associated structures inArtibeus jamaicensis andMyotis lucifugus.Am. J. Anat. 139: 167–190.PubMedGoogle Scholar
  9. Bhatnagar, K. P., and Reid, K. H. (1996). The human vomeronasal organ-I: Historical perspectives. A study of Ruysch's (1703) and Jacobson's (1811) reports on the vomeronasal organ with comparative comments and English translations.Biomed. Res. 7: 219–229.Google Scholar
  10. Bhatnagar, K. P., and Wible, J. R. (1994). Observations on the vomeronasal organ of the colugoCynocephalus (Mammalia, Dermoptera).Acta Anat. 151: 43–48.PubMedGoogle Scholar
  11. Bhatnagar, K. P., Matulionis, D. H., and Breipohl, W. (1982). Fine structure of the vomeronasal neuroepithelium of bats: A comparative study.Acta Anat. 112: 158–177.PubMedGoogle Scholar
  12. Bhatnagar, K. P., Wible, J. R., and Karim, K. B. (1996). Development of the vomeronasal organ inRousettus leschenaulti (Megachiroptera, Pteropodidae).J. Anat. 188: 129–135.PubMedGoogle Scholar
  13. Broom, R. (1895). On the organ of Jacobson in an Australian bat (Miniopterus).Proc. Linn. Soc. N.S. Wales 10: 571–575.Google Scholar
  14. Broom, R. (1897). A contribution to the comparative anatomy of the mammalian organ of Jacobson.Trans. Roy. Soc. Edinburgh 39: 231–255.Google Scholar
  15. Broom, R. (1909). On the organ of Jacobson inOrycteropus.Proc. Zool. Soc. London 1909: 680–683.Google Scholar
  16. Broom, R. (1915a). On the organ of Jacobson and its relations in the “Insectivora.” I.Tupaia andGymnura.Proc. Zool. Soc. London 1915: 157–162.Google Scholar
  17. Broom, R. (1915b). On the organ of Jacobson and its relations in the “Insectivora.” II.Talpa. Centetes, andChrysochloris.Proc. Zool. Soc. London 1915: 347–354.Google Scholar
  18. Butler, P. M. (1988). Phylogeny of the insectivores. In:The Phylogeny and Classification of the Tetrapods. Vol. 2. Mammals, M. J. Benton, ed., pp. 117–141. Clarendon Press, Oxford.Google Scholar
  19. Cooper, J. G., and Bhatnagar, K. P. (1976). Comparative anatomy of the vomeronasal organ complex in bats.J. Anat. 122: 571–601.PubMedGoogle Scholar
  20. Coquelin, A., Clancy, A. N., Macrides, F., Noble, E. P., and Gorski, R. A. (1984). Pheromonally induced release of luteinizing hormone in male mice: Involvement of the vomeronasal system.Endocrinology 100: 1224–1229.Google Scholar
  21. Duval, M., and Garnault, P. (1895). L'organe de Jacobson des chiroptères.C. R. Hebdomadaires Scé. Mém. Soc. Biol. 47: 478–481.Google Scholar
  22. Eales, N. B. (1926). The anatomy of the head of a foetal African elephant,Elephas africanus (Loxodonta africana). Trans. Roy. Soc. Edinburgh 54: 491–551.Google Scholar
  23. Eisthen, H. L. (1992). Phylogeny of the vomeronasal system and of receptor cell types in the olfactory and vomeronasal epithelia of vertebrates.Microsc. Res. Tech. 23: 1–21.PubMedGoogle Scholar
  24. Fawcett, E. (1918). The primordial cranium ofPoecilophoca weddelli (Weddell's seal), at the 27-mm, c.r. length.J. Anat. 52: 412–441.Google Scholar
  25. Frahm, H. D. (1981). Volumetric comparison of the accessory olfactory bulb in bats.Acta Anat. 109: 173–183.PubMedGoogle Scholar
  26. Frahm, H. D., and Bhatnagar, K. P. (1980). Comparative morphology of the accessory olfactory bulb in bats.J. Anat. 30: 349–365.Google Scholar
  27. Frick, H. (1954).Die Entwicklung und Morphologie des Chondrokraniums von MyotisKaup, Georg Thieme Verlag, Stuttgart.Google Scholar
  28. Gauthier, J. A., Kluge, A. G., and Rowe, T. (1988). Amniote phylogeny and the importance of fossils.Cladistics 4: 105–208.Google Scholar
  29. Gopalakrishna, A., and Chari, G. C. (1983). A review of the taxonomic position ofMiniopterus based on embryological characters,Curr. Sci. 52: 1176–1180.Google Scholar
  30. Griffiths, T. A., and Smith, A. L. (1991). Systematics of emballonuroid bats (Chiroptera: Emballonuridae and Rhinopomatidae), based on hyoid morphology.Bull. Am. Mus. Nat. Hist. 206: 62–83.Google Scholar
  31. Griffiths, T. A., Truckenbrod, A., and Sponholtz, P. J. (1992). Systematics of megadermatid bats (Chiroptera, Megadermatidae), based on hyoid morphology.Am. Mus. Novitates 3041: 1–21.Google Scholar
  32. Grosser, O. (1902). Zur Anatomie der Nasenhöhle und des Rachens der einheimischen Chiropteren.Gegenbaurs Morphol. Jahrb. 29: 1–77.Google Scholar
  33. Halpern, M. (1987). The organization and function of the vomeronasal system.Annu. Rev. Neurosci. 10: 325–362.PubMedGoogle Scholar
  34. Harrison, D. (1987). Preliminary thoughts on the incidence, structures and function of the mammalian vomeronasal organ.Acta Otolaryngol. (Stockh.) 103: 489–495.Google Scholar
  35. Herzfeld, P. (1889). Ueber das Jacobson'sche Organ des Menschen und der Säugetiere.Zool. Jahrb. 3: 551–574.Google Scholar
  36. Jacobson, L. (1811). Description anatomique d'un organe observé dans les mammiferes.Ann. Mus. Hist. Nat. Paris. 18: 414–424 (a report by G. Cuvier; see English translation by Bhatnagar and Reid, 1996).Google Scholar
  37. Jollie, M. (1968). The head skeleton of a new-bornManis javanica with comments on the ontogeny and phylogeny of the mammal head skeleton.Acta Zool. 49: 227–305.Google Scholar
  38. Koike, K. (1924). Die Herausbildung der äußeren Körperform und der Entwicklungsgrad der Organe bei einer Javanischen Kleinfledermaus (Scotophilus temmincki, Hoesfield).Z. Anat. Entwicklungsg. 72: 510–541.Google Scholar
  39. Koopman, K. F. (1984a). Bats. In:Orders and Families of Recent Mammals of the World. S. Anderson and J. K. Jones, Jr., eds., pp. 145–186, John Wiley & Sons, New York.Google Scholar
  40. Koopman, K. F. (1984b). A synopsis of the families of bats, Part VII.Bat Res. News.25: 25–27.Google Scholar
  41. Koopman, K. F. (1993). Order Chiroptera. In:Mammal Species of the World, a Taxonomic and Geographic Reference, 2nd ed., D. E. Wilson and D. M. Reeder, eds., pp. 137–241, Smithsonian Institution Press, Washington, DC.Google Scholar
  42. Koopman, K. F. (1994): Chiroptera: Systematics. In:Handbk. Zool. VIII, Mammalia, Pt. 60, J. Niethammer, H. Schliemann, and D. Starck, eds., pp. 1–217, Walter de Gruyter, Berlin.Google Scholar
  43. Loo, S. K., and Kanagasuntheram, R. (1972). The vomeronasal organ in tree shrew and slow loris.J. Anat. 165: 165–172.Google Scholar
  44. Luckett, W. P. (1980). The use of fetal membrane characters in assessing chiropteran phylogeny. In:Proceedings Fifth International Bat Research Conference, D. E. Wilson and A. L. Gardner, eds., pp. 245–266, Texas Tech Press, Lubbock.Google Scholar
  45. Mackay-Sim, A., Duvall, D., and Graves, B. M. (1985). The West Indian manatee (Trichechus manatus) lacks a vomeronasal organ.Brain Behav. Evol. 27: 186–194.PubMedGoogle Scholar
  46. MacPhee, R. D. E., and Novacek, M. J. (1993). Definition and relationships of Lipotyphla. In:Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 13–31, Springer-Verlag, New York.Google Scholar
  47. Maddison, W. P., and Maddison, D. R. (1992)MacClade: Analysis of Phylogeny and Character Evolution, Version 3.01, Sinauer Associates, Sunderland, MA.Google Scholar
  48. Maier, W. (1980). Nasal structures in Old and New World primates. In:Evolutionary Biology of the New World Monkeys and Continental Drift, R. L. Ciochon and A. B. Chiarelli, eds. pp. 219–241 Plenum Press, New York.Google Scholar
  49. Mann, G. (1961). Bulbus olfactorius accessorius in Chiroptera.J. Comp. Neurol. 116: 135–144.PubMedGoogle Scholar
  50. Martin, R. D. (1990).Primate Origins and Evolution, Princeton University Press, Princeton, NJ.Google Scholar
  51. McDowell, S. B., Jr. (1958). The Greater Antillean insectivores.Bull. Am. Mus. Nat. Hist. 115: 113–214.Google Scholar
  52. McKay, G. M. (1973). Behavior and ecology of the Asiatic elephant in southeastern Ceylon.Smithson. Contrib. Zool. 125: 1–113.Google Scholar
  53. Mein, P., and Tupinier, Y. (1977). Formule dentaire et position systématique du Minioptère (Mammalia, Chiroptera).Mammalia 41: 207–211.Google Scholar
  54. Mendoza, A. S. (1993). Morphological studies on the rodent main and accessory olfactory systems—The regio olfactoria and vomeronasal organ.Ann. Anat. 175: 425–446.PubMedGoogle Scholar
  55. Meredith, M., and Fernández-Fewell, G. (1994). Vomeronasal system, LHRH, and sex behaviour.Psychoneuroendocrinology 19: 657–672.PubMedGoogle Scholar
  56. Novacek, M. J. (1980). Phylogenetic analysis of the chiropteran auditory region. In:Proceedings Fifth International Bat Research Conference, D. E. Wilson and A. L. Gardner, eds., pp. 317–330, Texas Tech Press, Lubbock.Google Scholar
  57. Novacek, M. J. (1991). Aspects of morphology of the cochlea in microchiropteran bats: An investigation of character transformation.Bull. Am. Mus. Nat. Hist. 206: 84–100.Google Scholar
  58. Nowak, R. M. (1991)Walker's Mammals of the World, 5th ed., Johns Hopkins University Press, Baltimore.Google Scholar
  59. Oelschläger, H. (1989) Early development of the olfactory and terminalis system in baleen whales.Brain Behav. Evol. 34: 171–183.PubMedGoogle Scholar
  60. Pedersen, S. C. (1993). Cephalometric correlates of echolocation in the Chiroptera.J. Morphol. 218: 85–98.PubMedGoogle Scholar
  61. Pettigrew, J. D., Jamieson, B. G. M., Robson, S. K., Hall, L. S., McNally, K. I., and Cooper, H. M. (1989).Phil. Trans. Roy. Soc. London B325: 489–559.PubMedGoogle Scholar
  62. Pierson, E. D. (1986).Molecular Systematics of the Microchiroptera: Higher Taxon Relationships and Biogeography, Ph. D. dissertation, University of California, Berkeley.Google Scholar
  63. Rasmussen, L. E., Schmidt, M. J., Henneous, R., Groves, D., and Daves, G. D., Jr. (1982). Asian bull elephants: Flehmen-like responses to extractable components in female elephant estrous urine.Science 217: 159–162.PubMedGoogle Scholar
  64. Salazar, I., Sánchez Quinteiro, P., and Cifuentes, J. M. (1995). Comparative anatomy of the vomeronasal cartilage in mammals: Mink, cat, dog, pig, cow and horse.Ann. Anat. 177: 475–481.PubMedGoogle Scholar
  65. Shoshani, J., Groves, C. P., Simons, E. L., and Gunnell, G. F. (1996). Primate phylogeny: Morphological vs molecular results.Mol. Phylogenet. Evol. 5: 102–154.PubMedGoogle Scholar
  66. Simonetta, B., and Magnoni, A. (1939). Richerche sulla presenza e sullo sviluppo del nervo terminale e dell'organo di Jacobson nei chirotteri.Arch. Ital. Anat. Embriol. (Firenze) 41: 343–356.Google Scholar
  67. Simmons, N. B. (1994). The case for chiropteran monophyly.Am. Mus. Novitates 3103: 1–54.Google Scholar
  68. Simmons, N. B. (1995). Bat relationships and the origin of flight.Symp. Zool. Soc. London 67: 27–43.Google Scholar
  69. Simmons, N. B. (1997). A reappraisal of interfamilial relationships of bats. In:Bats: Phylogeny, Morphology, Echolocation, and Conservation Biology, T. H. Kunz and P. A. Racey, eds., Smithsonian Institution Press, Washington, DC (in press).Google Scholar
  70. Sitt, W. (1943). Zur Morphologie des Primordialcraniums und des Osteoraniums eines Embryos vonRhinolophus rouxii von 15 mm Scheitel-Steiß-Länge.Gegenbaurs Morphol. Jahrb. 88: 268–342.Google Scholar
  71. Smith, J. D. (1972). Systematics of the chiropteran family Mormoopidae.Univ. Kans. Mus. Nat. Hist. Misc. Publ. 56: 1–132.Google Scholar
  72. Smith, J. D. (1976). Chiropteran evolution. In:Biology of Bats of the New World Family Phyllostomatidae, Part I, R. J. Baker, J. K. Jones, Jr., and D. C. Carter, eds.,Spec. Publ. Mus. Texas Tech. 10: 49–69, Texas Tech Press, Lubbock.Google Scholar
  73. Smith, J. D. (1977): On the nomenclatorial status ofChilonycteris gymnonotus Natterer, 1843.J. Mammal. 58: 245–246.Google Scholar
  74. Spatz, W. B. (1964). Beitrag zur Kenntnis der Ontogenese des Cranium vonTupaia glis (Diard 1820).Gegenbaurs Morphol. Jahrb. 106: 321–416.Google Scholar
  75. Stephan, H. (1965). Der Bulbus olfactorius accessorius bei Insektivoren und Primaten.Acta Anat. 62: 215–253.PubMedGoogle Scholar
  76. Switzer, R. C., Johnson, J. J., and Kirsch, J. A. W. (1980). Phylogeny through brain traits: Relation of lateral olfactory tract fibers to the accessory olfactory formation as a palimpsest of mammalian descent.Brain Behav. Evol. 17: 339–363.PubMedGoogle Scholar
  77. Swofford, D. L. (1993).Phylogenetic Analysis Using Parsimony (PAUP), Version 3. 1. 1, Smithsonian Institution, Washington, DC.Google Scholar
  78. Van Valen, L. (1979). The evolution of bats.Evol. Theory 4: 104–121.Google Scholar
  79. Wöhrmann-Repenning, A. (1984a) Phylogenetische Aspekte zur Topographie der Jacobsonschen Organe und der Ductus nasopalatini bei Insectivora, Primates,Tupaia undDidelphis. Anat. Anz. 157: 137–149.Google Scholar
  80. Wöhrmann-Repenning, A. (1984b). Vergleichend anatomische Untersuchungen am Vomeronasalkomplex und am rostralen Gaumen verschiedener Mammalia. Teil IGegenbaurs Morphol. Jahrb. 130: 501–530.PubMedGoogle Scholar
  81. Wöhrmann-Repenning, A. (1984c). Vergleichend anatomische Untersuchungen am Vomeronasalkomplex und am rostralen Gaumen verschiedener Mammalia. Teil II.Gegenbaurs Morphol. Jahrb. 130: 609–637.PubMedGoogle Scholar
  82. Wünsch, D. (1975).Zur Kenntnis der Entwicklung des Craniums des Koboldmaki, Tarsius bancanus borneanus,Horsfield, 1821, Zoological dissertation, University of Frankfurt, Frankfurt.Google Scholar
  83. Wysocki, C. J. (1979). Neurobehavioral evidence for the involvement of the vomeronasal system in mammalian reproduction.Neurosci. Biobehav. Rev. 3: 301–341.PubMedGoogle Scholar
  84. Zeller, U. (1987). Morphogenesis of the mammalian skull with special reference toTupaia In:Morphogenesis of the Mammalian Skull, H.-J. Kuhn and U. Zeller, eds.,Mammalian depicta, Vol. 13, pp. 17–50, Verlag Paul Parey, Hamburg.Google Scholar
  85. Zingeser, M. R. (1984). The nasopalatine ducts and associated structures in the rhesus monkey (Macaca mulatta): Topography, prenatal development, function, and phylogeny,Am. J. Anat. 170: 581–595.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • John R. Wible
    • 1
  • Kunwar P. Bhatnagar
    • 1
  1. 1.Department of Anatomical Sciences and Neurobiology, School of MedicineUniversity of LouisvilleLouisville

Personalised recommendations