European Journal of Pediatrics

, Volume 155, Issue 2, pp 106–111 | Cite as

Contribution of the polymerase chain reaction to the diagnosis of tuberculous infections in children

  • M. Fauville-Dufaux
  • B. Vanfleteren
  • A. Waelbroeck
  • J. Levy
  • P. De Mol
  • P. Debusschere
  • C. M. Farber
Infectious Diseases

Abstract

Abstract

The purpose of the study was to evaluate the contribution of polymerase chain reaction (PCR) to the diagnosis of tuberculous infection in children. Two different PCR techniques were compared to the standard bacteriological methods for the detection ofMycobacterium tuberculosis in 157 specimens obtained from the respiratory system of 51 children. Patients were classified in three groups: 12 patients with active disease (57 specimens), 12 patients with silent tuberculous infection (23 specimens) and 27 patients without tuberculosis (77 specimens). One PCR method (PCR/Ag85) used amplification of a fragment of the genes coding for the mycobacterial antigen 85 followed by hybridization of a probe specific forM. tuberculosis on the Southern blot of amplified DNA. The other PCR technique was a nested PCR (NPCR) using double amplification of a fragment of the insertion element IS6110 only present in theM. tuberculosis genome. The sensitivities of the different techniques, compared to the clinical diagnosis, were 7.0% for acid fast staining, 22.8% for culture, 24.6% for PCR/Ag85 and 44.9% for NPCR in active disease, 4.3% for culture, 8.7% for PCR/Ag85 and 28.6% for NPCR in silent tuberculous infection. The specificities were 100% for culture, 94.8% for PCR/Ag85 and 87.9% for NPCR. Among the 12 children clinically considered as having active tuberculosis, 1 had smear positive samples, 4 had at least one positive culture, 7 at least one positive PCR/Ag85 and 9 at least one NPCR positive sample. Among the 12 children having silent tuberculous infection, none had positive smears, 1 had one positive culture, 2 had at least one positive PCR/Ag85 and 5 at least one NPCR positive sample.

Conclusion

Our study suggests that both PCR techniques, and especially NPCR, are able to detectM. tuberculosis DNA in specimens containing few micro-organisms. PCR methods are more sensitive than culture and the results are available more quickly. Testing multiple samples from the same individual increased the sensitivity. In view of occasional false-positive results, cultures remain the gold standard to establish definitive diagnosis of primary tuberculous infection in children.

Key words

Mycobacterium tuberculosis Primary tuberculosis and silent tuberculous infection Polymerase chain reaction Diagnosis 

Abbreviations

NPCR

Nested

PCR

using double amplification of a fragment of the insertion sequence IS6110

PCR

polymerase chain reaction

PCR/Ag85

PCR using amplification of the genes coding for the mycobacterial antigen 85

PPD

purified protein derivative

TST

tuberculin skin test

TU

tuberculin units

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brisson-Noël A, Aznar C, Chureau C, Nguyen S, Pierre C, Bartoli M, Bonete R, Pialoux G, Gicquel B, Garrigue G (1991) Diagnosis of tuberculosis by DNA amplification in clinical practice evaluation. Lancet 338:364–366PubMedCrossRefGoogle Scholar
  2. 2.
    Borremans M, De Wit L, Volckaert G, Ooms J, De Bruyn J, Huygen K, Van Vooren JP, Stélandre M, Verhofstadt R, Content J (1989) Cloning, sequence determination and expression of a 32-kilodalton protein gene ofMycobacterium tuberculosis. Infect Immun 57:3123–3130PubMedGoogle Scholar
  3. 3.
    Collins CH, Grange JM, Yates MD (1985) Organization and practice in tuberculosis bacteriology. Butterworths, LondonGoogle Scholar
  4. 4.
    David H, Lévy-Frébault V, Thorel MF (1989) Méthodes de laboratoire pour Mycobactériologie clinique. Commission des laboratoires de référence et d'expertise de l'Institut Pasteur, ParisGoogle Scholar
  5. 5.
    de Lassence A, Lecossier D, Pierre C, Cadranel J, Stern M, Hance AJ (1992) Detection of mycobacterial DNA in pleural fluid from patients with tuberulous pleurisy by means of the polymerase chain reaction comparison of two protocols. Thorax 47:265–269PubMedCrossRefGoogle Scholar
  6. 6.
    Eisenach KD, Sifford MD, Cave MD, Bates JH, Crawford JT (1991) Detection ofMycobacterium tuberculosis in sputum samples using a polymerase chain reaction. Am Rev Respir Dis 144:1160–1163PubMedGoogle Scholar
  7. 7.
    Fauville-Dufaux M, Vanfleteren B, De Wit L, Vincke JP, Van Vooren JP, Yates MD, Serruys E, Content J (1992) Rapid detection of tuberculous and non-tuberculous mycobacteria by polymerase chain reaction amplification of a 162 bp DNA fragment from antigen 85. Eur J Clin Microbiol Infect Dis 11:797–803PubMedCrossRefGoogle Scholar
  8. 8.
    Kolk AHJ, Schuitema ARJ, Kuijper S, Van Leeuwen J, Hermans PWM, Embden JDA van, Hartskeerl RP (1992) Detection ofMycobacterium tuberculosis in clinical samples by using polymerase chain reaction and a nonradioactive detection system. J Clin Microbiol 30:2567–2575PubMedGoogle Scholar
  9. 9.
    Narita M, Matsuzono Y, Shibata M, Togashi T (1992) Nested amplification protocol for the detection ofMycobacterium tuberculosis. Acta Paediatr 81:997–1001PubMedCrossRefGoogle Scholar
  10. 10.
    Nemir RL, O'Hare D (1991) Tuberculosis in children 10 years of age and younger: three decades of experience during the chemotherapeutic era. Pediatrics 88:236–241PubMedGoogle Scholar
  11. 11.
    Persing DH, Smith TF, Tenover FC, White TJ (1993) Diagnostic molecular microbiology. Principles and applications. ASM, Washington, p 62Google Scholar
  12. 12.
    Picrre C, Olivier C, Lecossier D, Boussougant PY, Yeni P, Hance AJ (1993) Diagnosis of primary tuberculosis in children by amplification and detection of mycobacterial DNA. Am Rev Respir Dis 147:420–424Google Scholar
  13. 13.
    Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491PubMedCrossRefGoogle Scholar
  14. 14.
    Savic B, Sjöbring U, Alugupalli S, Larsson L, Miörner H (1992) Evaluation of polymerase chain reaction, tuberculosteraic acid analysis, and direct microscopy for the detection ofMycobacterium tuberculosis in sputum. J Infect Dis 166:1177–1180PubMedGoogle Scholar
  15. 15.
    Snider D, La Montagne J (1994) The neglected global tuberculosis problem: a report of the 1992 world congress on tuberculosis. J Infect Dis 169:1189–1196PubMedGoogle Scholar
  16. 16.
    Starke JR (1988) Modern approach to the diagnosis and treatment of tuberculosis in children. Pediatr Clin North Am 35:441–464PubMedGoogle Scholar
  17. 17.
    Starke JR, Jacobs RF, Jereb J (1992) Resurgence of tubercalosis in children. J Pediatr 120:839–855PubMedCrossRefGoogle Scholar
  18. 18.
    Thierry D, Cave MD, Eisenach KD, Crawford JT, Bases JH, Gicquel B, Guesdon JL (1990) IS6110, an IS-like element ofMycobacterium tuberculosis comple. Nucle Acids Res 18:188CrossRefGoogle Scholar
  19. 19.
    Toppel M, Malfroot A, Hofman B, Casimir G, Cantraine F, Dab I (1991) Tuberculosis in children: a 13-year follow up of 1714 patients in a Belgian home care centre. Eur J Pediatr 150:331–335CrossRefGoogle Scholar
  20. 20.
    Walker DA, Taylor IK, Mitchell DM, Shaw RJ (1992) Comparison of polymerase chain reaction amplification of two mycobacterial DNA sequences, IS6110 and the 65 kDa antigen gene, in the diagnosis of tuberculosis. Thorax 47:690–694PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • M. Fauville-Dufaux
    • 1
  • B. Vanfleteren
    • 1
  • A. Waelbroeck
    • 2
  • J. Levy
    • 2
  • P. De Mol
    • 3
  • P. Debusschere
    • 4
  • C. M. Farber
    • 5
  1. 1.Laboratory of Tuberculosis and MycobacteriaInstitut Pasteur-BruxellesBrusselsBelgium
  2. 2.Department of PaediatricsHôpital universitaire Saint-PierrreBrusselsBelgium
  3. 3.Laboratory of MicrobiologyHôpital universitaire Saint-PierreBrusselsBelgium
  4. 4.Medical Statistics Department, Ecole de Santé publiqueUniversité Libre de BruxellesBrusselsBelgium
  5. 5.Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations