Advertisement

European Journal of Clinical Microbiology

, Volume 5, Issue 4, pp 399–404 | Cite as

Emergence of beta-lactamase producing anaerobic bacteria in the tonsils during penicillin treatment

  • K. Tunér
  • C. E. Nord
Article

Abstract

The emergence of beta-lactamase producing bacteria in the microflora in the oropharyngeal cavity was studied in ten healthy volunteers treated with 1 g phenoxymethylpenicillin b.i.d. for ten days. Beta-lactamase activity in saliva was also investigated. A significant increase in the number of beta-lactamase producing strains ofBacteroidesspecies andFusobacterium nucleatumwas observed. One beta-lactamase producingStaphylococcus aureusstrain was recovered in one of the volunteers before the penicillin administration started and threeStaphylococcus aureusstrains produced beta-lactamase after ten days of antibiotic treatment. Beta-lactamase-production inHaemophilus influenzae, Haemophilus parainfluenzaeorBranhamella catarrhaliswas not observed before, during or after the antibiotic treatment. Beta-lactamase activity was noted in the broth cultures from one volunteer colonized with a beta-lactamase producingEscherichia colistrain. Beta-lactamase activity in saliva was observed in all volunteers, the activity increasing significantly in parallel to the increase of betalactamase producing bacterial strains. Beta-lactamase activity in saliva was completely inhibited in vitro by clavulanic acid and p-chloromercurbenzoate and about 70–80 per cent of the activity was inhibited by cefoxitin. The increase of beta-lactamase producing bacteria in the oropharynx as a consequence of penicillin treatment raises doubt as to whether penicillin is the drug of choice in the treatment of tonsillitis caused by group A streptococci when previous treatment has failed.

Keywords

Internal Medicine Penicillin Healthy Volunteer Bacterial Strain Antibiotic Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Farrar, E. W., O'Dell, N. M.: Beta-lactamase activity in ampicillin-resistantHaemophilus influenzae. Antimicrobial Agents and Chemotherapy 1974, 6: 625–629.PubMedGoogle Scholar
  2. 2.
    Kovatch, A. L., Wald, E. R., Michaels, R.: Beta-lactamase producingBranhamella catarrhalis causing otitis media in children. Journal of Pediatrics 1983, 2: 261–264.Google Scholar
  3. 3.
    Nord, C. E., Olsson, B., Dornbusch, K.: Beta-lactamases inBacteroides. Scandinavian Journal of Infectious Diseases 1978, Supplement 13: 27–32.Google Scholar
  4. 4.
    Tunér, K., Nord, C. E.: Beta-lactamase producing microorganisms in recurrent tonsillitis. Scandinavian Journal of Infectious Diseases 1983, Supplement 39: 83–88.Google Scholar
  5. 5.
    Brook, I., Gober, A. E.: Emergence of beta-lactamase producing aerobic and anaerobic bacteria in the oropharynx in children following penicillin chemoterhapy. Clinical Pediatrics 1984, 23: 338–341.PubMedGoogle Scholar
  6. 6.
    Neu, H. C.: What do beta-lactamases mean for clinical efficacy? Infection 1983, Supplement 11: 74–80.CrossRefGoogle Scholar
  7. 7.
    Doern, G. V., Siebers, K. G., Hallick, L. M., Morse, S. A.: Antibiotic susceptibility of beta-lactamase producing strains ofBranhamella catarrhalis. Antimicrobial Agents and Chemotherapy 1980, 17: 24–29.PubMedGoogle Scholar
  8. 8.
    Eliasson, J., Kamme, C.: Characterization of the plasmid-mediatedβ-Hactamase inBranhamella catarrhalis with special reference to substrate affinity. Journal of Antimicrobial Chemotherapy 1985, 15: 139–149.Google Scholar
  9. 9.
    Timewell, R., Taylor, E., Philips, I.: The beta-lactamase ofBacteroides species. Journal of Antimicrobial Chemotherapy 1981, 7: 137–146.PubMedGoogle Scholar
  10. 10.
    Olsson, B., Nord, C. E., Wadström, T.: Formation of beta-lactamase inBacteroides fragilis: cellbound and extracellular activity. Antimicrobial Agents and Chemotherapy 1976, 9: 727–735.PubMedGoogle Scholar
  11. 11.
    Tunér, K., Lindqvist, L., Nord, C. E.: Characterization of a new β-lactamase fromFusobacterium nucleatum by substrate profiles and chromatofocusing patterns. Journal of Antimicrobial Chemotherapy 1985, 16: 23–30.Google Scholar
  12. 12.
    Brook, I., Yocum, P.: In vitro protection og group A beta-hemolytic streptococci from penicillin byBacteroides fragilis. Chemotherapeutica 1983, 29: 18–23.Google Scholar
  13. 13.
    Tunér, K., Nord, C. E.: Impact of phenoxymethylpenicillin and clindamycin on microflora in recurrent tonsillitis. Annals of Otology, Rhinology and Laryngology 1985, 94: 278–280.Google Scholar
  14. 14.
    Lennette, E. H. (ed.): Manual of clinical microbiology. American Society for Microbiology, Washington, D.C., 1985.Google Scholar
  15. 15.
    Holdeman, L. V., Cato, E. P., Moore, E. C.: Anaerobic laboratory manual. Virginia Polytechnic Institute and State University, Blacksburg, 1977.Google Scholar
  16. 16.
    Brook, I., Gober, A. E.: Rapid method for detecting β-lactamase-producing bacteria in clinical specimens. Journal of Clinical Pathology 1984, 37: 1392–1394.PubMedGoogle Scholar
  17. 17.
    Dixon, W. J., Massay, F. J.: Introduction to statistical analysis. McGraw-Hill, New York, 1951, p. 105.Google Scholar
  18. 18.
    Heimdahl, A., von Konow, L., Nord, C. E.: Isolation ofβ-lactamase producingBacteroides strains associated with clinical failures with penicillin treatment of human orofacial infections. Archives of Oral Biology 1980, 25: 689–692.CrossRefPubMedGoogle Scholar
  19. 19.
    Nord, C. E., Olsson-Liljeqvist, B.: Resistance toβ-lactam antibiotics inBacteroides species. Journal of Antimicrobial Chemotherapy 1981, Supplement 8: 33–42.Google Scholar
  20. 20.
    Heimdahl, A., von Konow, L., Nord, C. E.: Beta-lactamase producingBacteroides species in the oral cavity in relation to penicillin therapy. Journal of Antimicrobial Chemotherapy 1981, 8: 225–229.PubMedGoogle Scholar
  21. 21.
    Pardee, A. B., Prestidge, L. S.: The initial kinetics of enzyme induction. Biochemica et Biophysica Acta 1961, 49: 77–88.CrossRefGoogle Scholar
  22. 22.
    Tunér, K., Lindqvist, L., Nord, C. E.: Purification and properties of a novelβ-lactamase fromFusobacterium nucelatum. Antimicrobial Agents and Chemotherapy 1985, 27: 943–947.PubMedGoogle Scholar
  23. 23.
    Sykes, R. B., Matthew, M.: The beta-lactamases of gram-negative bacteria. Journal of Antimicrobial Chemotherapy 1976, 2: 115–157.PubMedGoogle Scholar
  24. 24.
    Burt, S. J., Woods, D. R.: R factor transfer to obligate anaerobes fromEscherichia coli. Journal of General Microbiology 1976, 93: 405–409.PubMedGoogle Scholar
  25. 25.
    Butler, T., Tally, F. P., Gorbach, S. L., Malamy, M.: Transferable ampicillin resistance inBacteroides fragilis. Clinical Research 1980, 28: 365.Google Scholar
  26. 26.
    Privitera, G., Dublanchet, A., Sebald, M.: Transfer of multiple antibiotic resistance between subspecies ofBacteroides fragilis. Journal of Infectious Diseases 1979, 139: 97–101.PubMedGoogle Scholar
  27. 27.
    Tally, F. P., Snydman, D. R., Gorbach, S. L., Malamy, M. H.: Plasmid-mediated transferable resistanve to clindamycin and erythromycin inBacteroides fragilis. Journal of Infectious Diseases 1979, 139: 83–88.PubMedGoogle Scholar
  28. 28.
    Freijd, A., Rynnel-Dagöö, B.: Isolation of nasopharyngealβ-lactamase producingHaemophilus influenzae in relation to antibiotic treatment of acute otitis media in infants. Acta Otolaryngology 1983, 95: 351–357.Google Scholar
  29. 29.
    Syriopoulou, V., Schiefele, D., Smith, A., Perry, P., Howie, V.: Increasing incidence of ampicillin resistance inHaemophilus influenzae. Journal of Pediatrics 1978, 92: 889–892.PubMedGoogle Scholar
  30. 30.
    Sykes, R. B., Smith, J. T.: Biochemical aspects of betalactamases from gram-negative organisms. In: Smith, J. T. (ed.): Beta-lactamase. Academic Press, New York, 1979, p. 374.Google Scholar
  31. 31.
    Randolph, M. F., Redys, J. J., Hibbard, E. W.: Streptococcal pharyngitis. III: Streptococcal recurrence rates following therapy with penicillin or with clindamycin. Delaware Medical Journal 1970, 41: 87–92.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1986

Authors and Affiliations

  • K. Tunér
    • 1
  • C. E. Nord
    • 2
  1. 1.Department of Clinical MicrobiologyHuddinge University Hospital, Karolinska InstituteHuddingeSweden
  2. 2.National Bacteriological LaboratoryStockholmSweden

Personalised recommendations