Skip to main content
Log in

Do evacuated blood collection tubes interfere with therapeutic drug monitoring?

  • Original Articles
  • Published:
Pharmaceutisch Weekblad Aims and scope Submit manuscript

Abstract

The influence of various brands of evacuated blood collection systems (the old type, red stoppered Vacutainer®; the new type, blue stoppered Vacutainer®; Monoject® and Venoject®) on therapeutic drug monitoring was investigated. No interferences were found in the assay of ethosuximide, phenobarbital, phenytoin, valproic acid, digitoxin, digoxin, procainamide, gentamicin and theophylline.

Using Monoject® and old type Vacutainer® tubes, lower levels were found in the disopyramide assay: 91.3±4.6% (p<0.05) and 91.7±7.0% (not significant) respectively, and in the quinidine assay: 82.8±6.7% (p<0.02) and 83.9±4.4% (p<0.001) respectively as compared with glass tubes. In the carbamazepine assay a decrease was found in the Monoject® tubes only: 93.7±1.7% (p<0.01). The stoppers of Monoject® tubes and the old type Vacutainer® tubes contained the plasticizer tris(2-butoxyethyl)phosphate (tbep), which has been shown to be a potent inhibitor of the binding of several drugs to α1-acid glycoprotein.

Using the new type Vacutainer® and the Venoject®, no interferences were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cotham RH, Shand D. Spuriously low plasma propranolol concentrations resulting from blood collection methods. Clin Pharmacol Ther 1975;18:535–8.

    Google Scholar 

  2. Wilkinson GR, Schenker S. Pharmacokinetics of meperidine in man: Reply. Clin Pharmacol Ther 1976;19:486–8.

    Google Scholar 

  3. Fremstad D, Bergerud K. Reduced binding of quinidine in plasma from Vacutainers. Clin Pharmacol Ther 1976;20:120.

    Google Scholar 

  4. Kessler KM, Leech RC, Spann JF. Blood collection techniques, heparin and quinidine protein binding. Clin Pharmacol Ther 1979;25:204–10.

    Google Scholar 

  5. Piafsky KM, Borgå O. Inhibitor of drug-protein binding in Vacutainers. Lancet 1976;2:963–4.

    Google Scholar 

  6. Borgå O, Piafsky KM, Nilsen OG. Plasma protein binding of basic drugs. I. Selective displacement from α1-acid glycoprotein by tris(2-butoxyethyl) phosphate. Clin Pharmacol Ther 1977;22:539–44.

    Google Scholar 

  7. Veith RC, Raisys VA, Perera C. The clinical impact of blood collection methods on tricyclic antidepressants as measured by GC/MS-SIM. Commun Psychopharmacol 1978;2:491–4.

    Google Scholar 

  8. Mellström B, Tybring G. Ion-pair liquid chromatography of steady state plasma levels of chlorimipramine and demethylchlorimipramine. J Chromatogr 1977;143:597–605.

    Google Scholar 

  9. Stargel WW, Roe CR, Routledge PA, Shand DG. Importance of blood collection tubes in plasma lidocaine determinations. Clin Chem 1979;25:617–9.

    Google Scholar 

  10. Haughey DB, Lima JJ. Influence of blood collection technique on the plasma protein binding of disopyramide. Drug Intell Clin Pharm 1981;15:478–9.

    Google Scholar 

  11. Missen AW, Dickson SJ. Contamination of blood samples by plasticizer in evacuated tubes. Clin Chem 1974;20:1247.

    Google Scholar 

  12. Least CJ, Johnson GF, Solomon HM. Gas Chromatographic micro-scale procedure for theophylline, with use of a nitrogen sensitive detector. Clin Chem 1976;22:765–8.

    Google Scholar 

  13. Cochran E, Carl J, Hanin I, Kosloo S, Robins E. Effect of Vacutainer stoppers on plasma tricyclic levels. A reevaluation. Commun Psychopharmacol 1978;2:495–503.

    Google Scholar 

  14. Perel JM, Stiller RC, Lin FC, Narayanan S. Effect of specimen collection on the analysis of haloperidol, a neuroleptic drug. Clin Chem 1981;27:1102.

    Google Scholar 

  15. Kessler KM, Keival J, Narayanan S. Effect of blood collection system on percent of free quinidine in serum. Clin Chem 1980;26:1004–5.

    Google Scholar 

  16. Pasciolla P, Ince G, Fay A, Lin F, Narayanan S, Portnoy AL. An evaluation of selected enzyme immunoassay procedures using serum and plasma. Clin Chem 1980;26:1070.

    Google Scholar 

  17. Kessler KM, Ho-Tung P, Steele B, et al. Simultaneous quantitation of quinidine, procainamide and N-acetylprocainamide in serum by gas-liquid chromatography with a nitrogen phosphorus detector. Clin Chem 1982;28:1187–90.

    Google Scholar 

  18. Lin FC, Narayanan S, Stiller RC, Perel JM. Efficacy of evacuated tubes with and without anticoagulant for the gas Chromatographic determinations of lidocaine, primidone and theophylline. Clin Chem 1980;26:1005.

    Google Scholar 

  19. Pathak R, Lin FC, Narayanan S. Evaluation of specimen collection for the analysis of theophylline. Clin Chem 1981;27:1086.

    Google Scholar 

  20. Westenberg HG, De Zeeuw RA. Rapid and sensitive liquid Chromatographic determination of carbamazepine suitable for use in monitoring multiple-drug anticonvulsant therapy. J Chromatogr 1976;118:217–24.

    Google Scholar 

  21. Dijkhuis IC, Vervloet E. Rapid determination of the anti-epileptic drug di-n-propylacetic acid in serum. Pharm Weekbl 1974;109:42–5.

    Google Scholar 

  22. Van der Pol WS. Procainamide: clinical, anaytical and pharmacokinetic aspects. In: Merkus FWHM, ed. The serum concentration of drugs. Amsterdam: Excerpta Medica, 1980:172–9.

    Google Scholar 

  23. Flood JG, Bowers GN, McComb RB. Simultaneous liquid Chromatographic determination of three antiarrhythmic drugs: disopyramide, lidocaine and quinidine. Clin Chem 1980;26:197–200.

    Google Scholar 

  24. Soeterboek AM, Van Thiel M. Evaluatie van een aantal factoren, welke van invloed zijn op de serumspiegel van het pharmacon kinidine. Pharm Weekbl 1975;110:129–36.

    Google Scholar 

  25. Cramer G, Isaksson B. Quantitative determination of quinidine in plasma. Scand J Clin Lab Invest 1963;15:553–6.

    Google Scholar 

  26. McKichan JJ, Zola EM. Carbamazepine binding to plasma, albumin and α1-acid glycoprotein. Clin Pharmacol Ther 1982;31:246.

    Google Scholar 

  27. Piafsky KM, Borgå O. Plasma protein binding of basic drugs. II. Importance of α1-acid glycoprotein for interindividual variation. Clin Pharmacol Ther 1977;22:545–9.

    Google Scholar 

  28. Piafsky KM. Disease induced changes in the plasma binding of basic drugs. Clin Pharmacokinet 1980;5:246–62.

    Google Scholar 

  29. Edwards DJ, Lalka D, Cerra F, Slaughter RL. α1-acid glycoprotein concentration and protein binding in trauma. Clin Pharmacol Ther 1982;31:62–7.

    Google Scholar 

  30. Shang-Qiang J, Evenson MA. Effects of contaminants in blood-collection devices on measurements of therapeutic drugs. Clin Chem 1983;29:456–61.

    Google Scholar 

  31. Shah VP, Knapp G, Skelly JP, Cabana BE. Drug assay interference caused by plasticizer in Vacutainers. Am J Hosp Pharm 1982;39:1454.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janknegt, R., Lohman, J.J.H.M., Hooymans, P.M. et al. Do evacuated blood collection tubes interfere with therapeutic drug monitoring?. Pharmaceutisch Weekblad Scientific Edition 5, 287–290 (1983). https://doi.org/10.1007/BF02074856

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02074856

Keywords

Navigation