Skip to main content
Log in

Recovery of the electrocorticogram after incomplete and complete ischaemia of the brain

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

Incomplete cerebral ischaemia of 10 to 60 minutes duration was performed by reducing the perfusion pressure of completely isolated canine heads at brain temperatures of 37 and 32 °C. Complete cerebral ischaemia of the same duration was performed by complete stopping of the perfusion. The latency of recovery of the electrocorticogram,i.e. the time interval from the end of the cerebral ischaemia until reappearance of the first spontaneous cortical potentials, was shorter after incomplete ischaemia than after complete ischaemia. At 37 °C brain temperature the latency of recovery of the electrocorticogram was zero after a perfusion of the brain with a perfusion pressure of 22 mm Hg for 1 hour. After an incomplete ischaemia of 1 hour produced by a perfusion pressure of 20 mm Hg the latency of recovery was 0 to 4 minutes. Lower perfusion pressures increased the latency of recovery considerably. Reduction of brain temperature to 32 °C decreased the latency of recovery. At perfusion pressures of 22 mm or more there was no difference in the latency of recovery between 37 and 32 °C brain temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldy-Moulinier, M., Ischémies cérébrales expérimentales. Rev. Electroencephalogr. Neurophysiol. Clin.4 (1974), 334–343.

    PubMed  Google Scholar 

  2. Boyd, R. J., Connolly, J. E., Tolerance of anoxia of the dog's brain at various temperatures. Surg. Forum12 (1962), 408–412.

    Google Scholar 

  3. Branston, N. M., Symon, L., Crockard, H. A., Pásztor, E., Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp. Neurol.45 (1974), 195–208.

    PubMed  Google Scholar 

  4. Brierley, J. B., Brown, A. W., Excell, B. J., Meldrum, B. S., Brain damage in the rhesus monkey resulting from profound arterial hypotension. I. Its nature, distribution and general physiological correlates. Brain Res.13 (1969), 68–100.

    PubMed  Google Scholar 

  5. Brierly, J. B., Excell, J., The effect of profound systemic hypotension upon the brain of m. rhesus: Physiological and pathological observations. Brain89 (1966), 269–298.

    PubMed  Google Scholar 

  6. Brockman, S. K., Jude, J. R., The tolerance of the dog brain to total arrest of circulation. Bull. Johns Hopkins Hosp.106 (1960), 74–80.

    PubMed  Google Scholar 

  7. Cantu, R. C., Ames III, A., di Giacinto, G., Dixon, J., Hypotension: A major factor limiting recovery from cerebral ischemia. J. Surg. Res.9 (1969), 525–529.

    PubMed  Google Scholar 

  8. Golden, P. F., Jane, J. A., Experimental study of irreversible shock and the brain. J. Neurosurg.39 (1973), 434–441.

    PubMed  Google Scholar 

  9. Hirsch, H., Bolte, A., Schaudig, A., Tönnis, D., Über die Wiederbelebung des Gehirns bei Hypothermie. Pflügers Arch. ges. Physiol.265 (1957), 328–336.

    Google Scholar 

  10. Hirsch, H., Tesch, P., Recovery of the electrocorticogram of canine brains after complete cerebral ischemia at 37 °C and 32 °C. Neurosurg. Rev., in press.

  11. Hossmann, K. A., Zimmermann, V., Resuscitation of the monkey brain after 1 h complete ischemia. I. Physiological and morphological observations. Brain Res.81 (1974), 59–74.

    PubMed  Google Scholar 

  12. Marshall, L. F., Durity, F., Lounsbury, R., Graham, D. I., Welsh, F., Langfitt, T. W., Experimental cerebral oligemia and ischemia produced by intracranial hypertension. Part I: Pathophysiology, electroencephalography, cerebral blood flow, blood-brain barrier and neurological function. J. Neurosurg.43 (1975 a), 308–317.

    PubMed  Google Scholar 

  13. Marshall, L. F., Graham, D. I., Durity, F., Lounsbury, R., Welsh, F., Langfitt, T. W., Experimental cerebral oligemia and ischemia produced by intracranial hypertension. Part 2: Brain morphology. J. Neurosurg.43 (1975 b), 318–322.

    PubMed  Google Scholar 

  14. Marshall, S. B., Owens, J. C., Swan, H., Temporary circulatory occlusion to the brain of the hypothermic dog. Arch. Surg.72 (1957), 98–106.

    Google Scholar 

  15. Nordström, C. H., Rehncrona, St., Siesjö, B. K., Restitution of cerebral energy state after complete and incomplete ischemia of 30 min duration. Acta physiol. Scand.97 (1976), 270–272.

    Google Scholar 

  16. Nordström, C. H., Rehncrona, S., Siesjö, B. K., Restitution of cerebral energy state, as well as of glycolytic metabolites, citric acid cycle intermediates and associated amino acids after 30 minutes of complete ischemia in rats anaesthetized with nitrous oxide or phenobarbital. J. Neurochem.30 (1978), 479–486.

    PubMed  Google Scholar 

  17. Pertuiset, B., Goutorbe, J., Caruel, N., van Effenterre, R., Horn, Y. E., L'hypotension profonde préventive par arfonad ou nitroprussiate de soude durant l'abord de 66 anévrysmes sacciformes sus-tentoriels. Neuro-Chirurgie20 (1974), 555–564.

    PubMed  Google Scholar 

  18. Pertuiset, B., Houtteville, J.-P., van Effenterre, R., Caruel, N., Goutorbe, J., Chirurgie des anévrysmes artériels sus-tentoriels. Réduction par coagulation bipolaire sous hypotension profonde et exclusion par clip autobloquant (52 cas opérés sous microscope). Nouv. Presse Med.3 (1974), 1649–1652.

    PubMed  Google Scholar 

  19. Salford, L. G., Siesjö, B. K., The influence of arterial hypoxia and unilateral carotid artery occlusion upon regional blood flow and metabolism in the rat brain. Acta physiol. Scand.92 (1974), 130–141.

    PubMed  Google Scholar 

  20. Simeone, F. A., Witoszka, M., The central nervous system in the experimental hemorrhagic shock. Amer. J. Surg.119 (1970), 427–432.

    PubMed  Google Scholar 

  21. Steen, A., Michenfelder, J. D., Milde, J. H., Incomplete versus complete cerebral ischemia: Improved outcome with a minimal blood flow. Ann. Neurol.6 (1979), 389–398.

    PubMed  Google Scholar 

  22. Terlecki, S., Baldwin, B. A., Bell, F. R., Experimental cerebral ischaemia in sheep. Acta Neuropath.7 (1967), 185–200.

    PubMed  Google Scholar 

  23. Trojaberg, W., Boysen, G., Relation between EEG, regional cerebral blood flow and internal carotid artery pressure during carotid endarterectomy. Electroenceph. Clin. Neurophysiol.34 (1973), 61–69.

    PubMed  Google Scholar 

  24. Wright, R. L., Experimental cerebral ischemia. Physiol. Angiologie16 (1965), 397–404.

    Google Scholar 

  25. Yashon, D., Locke, G. E., Bingham, G., Jr., Wiederholt, W. C., Hunt, W. E., Cerebral function during profound oligemic hypotension in the dog. J. Neurosurg.34 (1971), 494–499.

    PubMed  Google Scholar 

  26. Young, W. P., Javid, M., Study of the use of intravenous urea after stimulated cardiac arrest in dogs. Surg. Forum10 (1960), 522–524.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirsch, H. Recovery of the electrocorticogram after incomplete and complete ischaemia of the brain. Acta neurochir 66, 147–158 (1982). https://doi.org/10.1007/BF02074501

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02074501

Keywords

Navigation