Skip to main content
Log in

Stability of (Fe-Tm-B) amorphous alloys: relaxation and crystallization phenomena

  • Invited Papers
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Fe-Tm-B base (TM=transition metal) amorphous alloys (metallic glasses) are thermodynamically metastable. This limits their use as otherwise favourable materials, e.g. magnetically soft, corrosion resistant and mechanically firm. By analogy of the mechanical strain-stress dependence, at a certain degree of thermal activation the amorphous structure reaches its limiting state where it changes its character and physical properties. Relaxation and early crystallization processes in amorphous alloys, starting already around 100°C, are reviewed involving subsequently stress relief, free volume shrinking, topological and chemical ordering, pre-crystallization phenomena up to partial (primary) crystallization. Two diametrically different examples are demonstrated from among the soft magnetic materials: relaxation and early crystallization processes in the Fe-Co-B metallic glasses and controlled crystallization of amorphous ribbons yielding rather modern nanocrystalline “Finemet” alloys where late relaxation and pre-crystallization phenomena overlap when forming extremely dispersive and fine-grained nanocrystals-in-amorphous-sauce structure. Mössbauer spectroscopy seems to be unique for magnetic and phase analysis of such complicated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Cantor, Devitrification of amorphous alloys, in:Proc. 3rd Int. Conf. Amorphous Metallic Materials, AMM III, Topolcianky 1992 (Trans. Tech. Publ., Zurich) p. 2.

  2. S. Foner, J. Appl. Phys. 38 (1967) 1510.

    Google Scholar 

  3. V. Veselý, T. Zemčík, in:Proc. Int. Conf. Applications Mössbauer Effect, ICAME'89, Budapest 1989, Hyp. Int. 55–58 (1990) 2679.

    Google Scholar 

  4. E. Illeková, A generalized model of structural relaxation in metallic and chalcogenide glasses, in:Proc. 3rd Int. Conf. Amorphous Metallic Materials, AMM III, Topolcianky 1992 (Trans. Tech. Publ., Zurich) p. 54.

  5. I. Turek and T. Zemčík, Hyp. Int. 55 (1990) 1089.

    Google Scholar 

  6. I. Turek, in:Proc. 2nd Int. Conf. Amorphous Metallic Materials, AMM II, Smolenice 1989, (Trans. Tech. Publ., Zurich, 1990) p. 293.

  7. T. Zemčík, in:Proc. Int. Conf. Applications Mössbauer Effect, ICAME'89, Budapest 1989, Hyp. Int. 55–58 (1990) 1099.

    Google Scholar 

  8. B. Million, Kovové materiály (Metallic Materials) 1 (1967) 33.

    Google Scholar 

  9. T. Zemčík, K. Závěta, L. Kraus and V.D. Sedykh, Proceedings of this conference, Hyp. Int. 83 (1994) 275.

    Google Scholar 

  10. J.M. Dubois and G. Le Caer, Nucl. Instr. Meth. 199 (1982) 307.

    Google Scholar 

  11. J.I. Budnick, F.H. Sanchez, Y.D. Zhang, M. Choi, W.A. Hines, Z.Y. Zhang, S.H. Ge and R. Hasegawa, IEEE Trans. Magn. MAG-23 (1987) 1937.

    Google Scholar 

  12. H.-G. Wagner, M. Ackermann, R. Gaa and U. Gonser, in:Rapidly Quenched Metals, eds. S. Steeb and H. Warlimont (North-Holland, Amsterdam, 1985) p. 247.

    Google Scholar 

  13. J. Pavlovský and T. Zemcík, Phys. Stat. Sol. (a) 112 (1989) K1.

  14. T. Zemčík and S. Havlíček, in:Proc. Conf. Hyperfine Interactions, HFI'89, Prague 1989, Hyp. Int. 59 (1990) 465.

    Google Scholar 

  15. T. Zemčík and S. Havlíček, in:Proc. Int. Conf. Applications Mössbauer Effect, ICAME'89, Budapest 1989, Hyp. Int. 55–58 (1990) 1103.

    Google Scholar 

  16. P. Duhaj and P. Svec, in:Proc. 2nd Int. Conf. Amorphous Metallic Materials, AMM II, Smolenice 1989 (Trans. Tech. Publ., Zurich, 1990) p. 69.

  17. Y. Yoshizawa and K. Yamauchi, IEEE Trans. Magn. 25 (1989) 3324.

    Google Scholar 

  18. G. Herzer, IEEE Trans. Magn. MAG-25 (1989) 3327.

    Google Scholar 

  19. M. Fujinami, Y. Hashiguchi and T. Yamamoto, Japan J. Appl. Phys. 29 (1990) L477.

    Google Scholar 

  20. O. Kohmoto, K. Haneda and T. Choh, Japan J. Appl. Phys. 29 (1990) L1460.

    Google Scholar 

  21. T. Zemčík, Y. Jirásková, K. Závěta, D. Eckert, J. Schneider, N. Mattern and D. Hesske, Mater. Lett. 10 (1991) 313.

    Google Scholar 

  22. T. Zemčík, Phase analysis of amorphous and nanocrystalline FeCuNbSiB alloys by57Fe Mössbauer spectroscopy, in:Proc. 3rd Int. Conf. Amorphous Metallic Materials, AMM III, Topolcianky 1992 (Trans. Tech. Publ., Zurich) p. 261.

  23. T. Zemčík, Y. Jirásková and M. Kočová, J. Mater. Sci. Lett. 12 (1992) 1298.

    Google Scholar 

  24. G. Hampel, A. Pundt and J. Hesse, J. Phys.: Condens. Matter 4 (1992) 3195.

    Google Scholar 

  25. A. Pundt, G. Hampel and J. Hesse, Z. Phys. B 87 (1992) 65.

    Google Scholar 

  26. M. Knobel, R. Sato Turtelli and H.R. Rechenberg, J. Appl. Phys. 71 (1992) 6008.

    Google Scholar 

  27. J. Ryba, T. Zemčík, Anomalous increase of the saturation magnetic polarization during structural relaxation of amorphous Fe73.5Cu1Nb3Si13.5B9, in:Proc. 3rd Int. Conf. Amorphous Metallic Materials, AMM III, Topolcianky 1992 (Trans. Tech. Publ., Zurich) p. 583.

  28. T. Zemčík and J. Ryba, Proceedings of this conference, Hyp. Int. 83 (1994) 299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zemčík, T. Stability of (Fe-Tm-B) amorphous alloys: relaxation and crystallization phenomena. Hyperfine Interact 83, 131–145 (1994). https://doi.org/10.1007/BF02074265

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02074265

Keywords

Navigation