Skip to main content
Log in

Cholinergic signaling in the rat pineal gland

  • Review Article
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. Innervation of the mammalian pineal gland is mainly sympathetic. Pineal synthesis of melatonin and its levels in the circulation are thought to be under strict adrenergic control of serotoninN-acetyltransferase (NAT). In addition, several putative pineal neurotransmitters modulate melatonin synthesis and secretion.

2. In this review, we summarize what is currently known on the pineal cholinergic system. Cholinergic signaling in the rat pineal gland is suggested based on the localization of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), as well as muscarinic and nicotinic ACh binding sites in the gland.

3. A functional role of ACh may be regulation of pineal synaptic ribbon numbers and modulation of melatonin secretion, events possibly mediated by phosphoinositide (PI) hydrolysis and activation of protein kinase C via muscarinic ACh receptors (mAChRs).

4. We also present previously unpublished data obtained using primary cultures of rat pinealocytes in an attempt to get more direct information on the effects of cholinergic stimulus on pinealocyte melatonin secretion. These studies revealed that the cholinergic effects on melatonin release are restricted mainly to intact pineal glands since they were not readily detected in primary pinealocyte cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aloyo, V. J., and Walker, R. F. (1987). Noradrenergic stimulation of serotonin release from the rat pineal glands in vitro.J. Endocrinol. 1143–9.

    PubMed  Google Scholar 

  • Aloyo, V. J., and Walker, R. F. (1988). Alpha-adrenergic control of serotonin release from rat pineal glands.Neuroendocrinology 4861–66.

    PubMed  Google Scholar 

  • Appleyard, M. E. (1994). Non-cholinergic functions of acetylcholinesterase.Biochem. Soc. Trans. 22749–755.

    PubMed  Google Scholar 

  • Ashkenazi, A., Peralta, E. G., Winslow, J. W., Ramachandran, J., and Capon, D. J. (1989). Functionally distinct G proteins selectively couple different receptors to PI hydrolysis in the same cell.Cell 56487–493.

    PubMed  Google Scholar 

  • Azekawa, T., Sano, A., Sei, H., and Morita, Y. (1991). Diurnal changes in pineal extracellular indoles of freely moving rats.Neurosci. Lett. 13293–96.

    PubMed  Google Scholar 

  • Basinska, J., Sastry, P. S., and Stancer, H. C. (1973). Incorporation of32Pi orthophosphate into phospholipids of calf pineal slices in the presence and absence of neurotransmitter.Endocrinology 921588–1595.

    PubMed  Google Scholar 

  • Benson, B., Reynolds, W. D., Burns, D. M., and Leadem, C. A. (1989). Diurnal variation in norepinephrine-stimulated release of pineal serotonin in vitro.J. Neural. Transm. 7889–101.

    Google Scholar 

  • Bonner, T. I. (1989). The molecular basis of muscarinic receptor diversity.TINS 12148–151.

    PubMed  Google Scholar 

  • Buda, M., and Klein, D. C. (1978). A suspension culture of pinealocytes: Regulation of N-acetyltransferase activity.Endocrinology 1031483–1493.

    PubMed  Google Scholar 

  • Chick, C. L., and Ho, A. K. (1993). Altered pineal adrenergic-stimulated cyclic nucleotide responses in spontaneously hypertensive rats.Am. J. Physiol. 264H157-H162.

    PubMed  Google Scholar 

  • Cooper, J. R. (1994). Unsolved problems in the cholinergic nervous system.J. Neurochem. 63395–399.

    PubMed  Google Scholar 

  • Dryer, S. E., and Henderson, D. (1991). A cyclic GMP-activated channel in dissociated cells of the chick pineal gland.Nature 353756–758.

    PubMed  Google Scholar 

  • Eichberg, J., Shein, H. M., and Hauser, G. (1973). Effect of neurotransmitters and other pharmacological agents on the metabolism of phospholipids in pineal-gland cultures and cloned neuronal and glial cells.Biochem. Soc. Trans. 1352–359.

    Google Scholar 

  • Eränkö, O., Rechardt, L., Eränkö, L., and Cunningham, A. (1970). Light and electron microscopic histochemical observations on cholinesterase-containing sympathetic nerve fibers in the pineal body of the rat.Histochem. J. 2479–489.

    PubMed  Google Scholar 

  • Felder, C. C., Kanterman, R. Y., Ma, A. L., and Axelrod, J. (1989). A transfected m1 muscarinic acetylcholine receptor stimulates adenylate cyclase via phosphatidylinositol hydrolysis.J. Biol. Chem. 26420356–20362.

    PubMed  Google Scholar 

  • Finocchiaro, L. M. E., and Téllez-I-nón, M. T. (1991). Effects of cholinergic muscarinic agents on protein kinase C activity in rat pineal gland.Cell. Biol. Int. Rep. 15943–954.

    PubMed  Google Scholar 

  • Finocchiaro, L. M. E., Scheucher, A., Finkielman, S., Nahmod, V. E., and Pirola, C. J. (1989). Muscarinic effects on the hydroxy- and methoxyindole pathway in the rat pineal gland.J. Endocrinol. 123205–211.

    PubMed  Google Scholar 

  • Finocchiaro, L. M. E., Scheucher, A., Alvarez, A. L., Finkielman, S., Nahmod, V. E., and Pirola, C. J. (1990). Pineal hyperactivity in spontaneously hypertensive rats: Muscarinic regulation of indole metabolism.Clin. Sci. 79437–442.

    PubMed  Google Scholar 

  • Govitrapong, P., Phansuwan-Pujito, P., and Ebadi, M. (1989). Studies on the properties of muscarinic cholinergic receptor sites in bovine pineal gland.Comp. Biochem. Physiol. 94C159–164.

    Google Scholar 

  • Gupta, B. B. P., Spessert, R., and Vollrath, L. (1991). Acetylcholine and muscarinic agonists increase synaptic ribbon numbers in the rat pineal.Neurosci. Lett. 133125–128.

    PubMed  Google Scholar 

  • Gupta, B. B. P., Seidel, A., Spessert, R., Büttner, W., Klauke, N., Spanier, J., Weber, A., Ziemer, D., and Vollrath, L. (1992). In vitro effects of putative neurotransmitter on synaptic ribbon numbers and N-acetyltransferase activity in the rat pineal gland.J. Neural. Transm. 89167–178.

    Google Scholar 

  • Harrison, N., and Zatz, M. (1989). Voltage-dependent calcium channels regulate melatonin output from cultured chick pineal cells.J. Neurosci. 92462–2467.

    PubMed  Google Scholar 

  • Kappers, J. A. (1960). The development, topographical relation and innervation of the epiphysis cerebri in the albino rat.Z. Zellforsch. 52163–215.

    PubMed  Google Scholar 

  • Kawashima, K., Nagakura, A., Wurzburger, R. J., and Spector, S. (1984). Melatonin in serum and the pineal of spontaneously hypertensive rats.Clin. Exp. Hypertens. Theory Pract. A61517–1528.

    Google Scholar 

  • Klein, D. C., Auerbach, D. A., and Weller, J. L. (1981). Seesaw signal processing in pineal cells: Homologous sensitization of adrenergic stimulation of cyclic GMP accompanies homologous desensitization ofβ-adrenergic stimulation of cyclic AMP.Proc. Natl. Acad. Sci. USA 784625–4629.

    PubMed  Google Scholar 

  • Knowles, R. G., and Moncada, S. (1994). Nitric oxide synthases in mammals.Biochem. J. 298249–258.

    PubMed  Google Scholar 

  • LaBella, F. S., and Shin, S. (1968). Estimation of cholinesterase and choline acetyltransferase in bovine anterior pituitary, posterior pituitary, and pineal body.J. Neurochem. 15335–342.

    PubMed  Google Scholar 

  • Laitinen, J. T., Torda, T., and Saavedra, J. M. (1989a). Cholinergic stimulation of phosphoinositide hydrolysis in the rat pineal gland.Eur. J. Pharmacol. 161237–240.

    PubMed  Google Scholar 

  • Laitinen, J. T., Torda, T., and Saavedra, J. M. (1989b). Pineal muscarinic phosphoinositide response: Pertussis toxin resistant signaling with very low receptor number.Biochem. Biophys. Res. Commun. 164645–652.

    PubMed  Google Scholar 

  • Laitinen, J. T., Torda, T., and Saavedra, J. M. (1990). Enhanced phosphoinositide hydrolysis in the pineal gland of spontaneously hypertensive rats.Am. J. Hypertens. 3496–498.

    PubMed  Google Scholar 

  • Laitinen, J. T., Vakkuri, O., and Saavedra, J. M. (1992). Pineal muscarinic phosphoinositide responses: Age-associated sensitization, agonist-induced desensitization and increase in melatonin release from cultured pineal glands.Neuroendocrinology 55492–499.

    PubMed  Google Scholar 

  • Lin, A. M.-Y., Schaad, N. C., Schulz, P. E., Coon, S. L., and Klein, D. C. (1994). Pineal nitric oxide synthase: Characteristics, adrenergic regulation and function.Brain Res. 651160–168.

    PubMed  Google Scholar 

  • Lincoln, T. M., and Cornwell, T. L. (1993). Intracellular cyclic GMP receptor proteins.FASEB J. 7328–338.

    PubMed  Google Scholar 

  • Luo, Z., Schultz, R. L., and Whitter, E. F. (1990). Ultrastructural localization of acetylcholinesterase in the guinea pig pineal gland.Anat. Rec. 226481–488.

    PubMed  Google Scholar 

  • Machado, A. B. M., and Lemos, V. P. J. (1971). Histochemical evidence for a cholinergic sympathetic innervation in the rat pineal body.J. Neuro-Visc. Rel. 32104–111.

    Google Scholar 

  • Martinez-Soriano, F., Welker, H. A., and Vollrath, L. (1984). Correlation of the number of pineal “synaptic” ribbons and spherules with the level of serum melatonin over a 24-h period in male rabbits.Cell Tissue Res. 236555–560.

    PubMed  Google Scholar 

  • Monsma, F. J., Jr., Abood, L. G., and Hoss, W. (1988). Inhibition of phosphoinositide turnover by selective muscarinic antagonists in the rat striatum.Biochem. Pharmacol. 372437–2443.

    PubMed  Google Scholar 

  • Olcese, J. (1991). Neuropeptide Y: An endogenous inhibitor of norepinephrine-stimulated melatonin secretion in the rat pineal gland.J. Neurochem. 57943–947.

    PubMed  Google Scholar 

  • Olcese, J., and Münker, M. (1994). Extracellular serotonin promotes melatonin release from cultured rat pinealocytes: Evidence for an S2-type receptor-mediated autocrine feedback.Brain Res. 643150–154.

    PubMed  Google Scholar 

  • Olcese, J., Müller, D., Münker, M., and Schmidt, C. (1994). Natriuretic peptides elevate cyclic 3′,5′-guanosine monophosphate levels in cultured rat pinealocytes: Evidence for guanylate cyclase-linked membrane receptors.Mol. Cell. Endocrinol. 10395–100.

    PubMed  Google Scholar 

  • Peralta, E. G., Ashkenazi, A., Wislow, J. W., Ramachandran, J., and Capon, D. J. (1988). Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes.Nature 334434–437.

    PubMed  Google Scholar 

  • Phansuwan-Pujito, P., Mikkelsen, J. D., Govitrapong, P., and Møller, M. (1991). A cholinergic innervation of the bovine pineal gland visualized by immunohistochemical detection of choline acetyltransferase-immunoreactive nerve fibers.Brain Res. 54549–58.

    PubMed  Google Scholar 

  • Phansuwan-Pujito, P., Larsen, P. J., and Møller, M. (1994). Expression of muscarinic receptors of subtype m1 in the rat pineal gland. InAdvances in Pineal Research: 8, M. Møller and P. Pévet, Eds., John Libbey, London, pp. 207–213.

    Google Scholar 

  • Racké, K., Sommer, M., Burns, F., and Hering, B. (1991). Differential effects of electrical stimulation, blockade of neuronal amine uptake and activation ofα 2-adrenoceptors on the release of endogenous noradrenaline and 5-hydroxytryptamine from the isolated rat pineal gland.Naunyn-Schmiedeberg's Arch. Pharmacol. 343337–343.

    Google Scholar 

  • Reiter, R. J. (1991). Pineal melatonin: Cell biology of its synthesis and of its physiological interactions.Endocr. Rev. 12151–180.

    PubMed  Google Scholar 

  • Reuss, S., Schröder, B., Schröder, H., and Maelicke, A. (1992). Nicotinic cholinoceptors in the rat pineal gland as analyzed by Western blot, light- and electron microscopy.Brain Res. 573114–118.

    PubMed  Google Scholar 

  • Rodríguez de Lorez Arnaiz, G., and Pellegrino de Iraldi, A. (1972). Cholinesterase in cholinergic and adrenergic nerves: A study of the superior cervical ganglia and the pineal gland of the rat.Brain Res. 42230–233.

    PubMed  Google Scholar 

  • Rubio, A., Guerrero, J. M., Reiter, R. J., and Osuna, C. (1993). Involvement ofα- andβ-adrenergic receptors in the regulation of rat pineal N-acetyl-transferase activity during development.Endocrinology 132393–398.

    PubMed  Google Scholar 

  • Saavedra, J. M. (1980). Increased adrenaline,β-adrenoceptor stimulation and phospholipid methylation in pineal gland of spontaneously hypertensive rats.Clin. Sci. 59239s-242s.

    PubMed  Google Scholar 

  • Schaad, N. C., Vanecek, J., and Schultz, P. E. (1994). Photoneural regulation of rat pineal nitric oxide synthase.J. Neurochem. 622496–2499.

    PubMed  Google Scholar 

  • Schlumpf, M., Bruinink, A., Lichtensteiger, W., Cortés, R., Palacios, J. M., and Pazos, A. (1987). Beta-adrenergic binding sites in fetal rat central nervous system and pineal gland: Their relation to other receptor sites.Dev. Pharmacol. Ther. 10:422–435.

    PubMed  Google Scholar 

  • Schlumpf, M., Palacios, J. M., Cortes, R., and Lichtensteiger, W. (1991). Regional development of muscarinic cholinergic binding sites in the prenatal rat brain.Neuroscience 45347–357.

    PubMed  Google Scholar 

  • Scrier, B. K., and Klein, D. C. (1974). Absence of choline acetyltransferase in rat and rabbit pineal gland.Brain Res. 79347–351.

    PubMed  Google Scholar 

  • Seidel, A., Kantarjian, A., and Vollrath, L. (1990). A possible role for cyclic guanosine monophosphate in the rat pineal gland.Neurosci. Lett. 110227–231.

    PubMed  Google Scholar 

  • Spessert, R. (1993). Vasoactive intestinal peptide stimulation of cyclic guanosine monophosphate formation: Further evidence for a role of nitric oxide synthase and cytosolic guanylate cyclase in rat pinealocytes.Endocrinology 1322513–2517.

    PubMed  Google Scholar 

  • Spessert, R., and Vollrath, L. (1993). Muscarinic agonists have no measurable effect on cGMP formation of rat pinealocytes.Brain Res. Bull. 32589–592.

    PubMed  Google Scholar 

  • Spessert, R. Gupta, B. B. P., Seidel, A., Maitra, S. K., and Vollrath, L. (1992a). Involvement of cyclic guanosine monophosphate (cGMP) and cytosolic guanylate cyclase in the regulation of synaptic ribbon numbers in the rat pineal gland.Brain Res. 570231–236.

    PubMed  Google Scholar 

  • Spessert, R., Heil, K., Gupta, B. B. P., and Vollrath, L. (1992b). Biphasic 24-hour variations in cyclic GMP accumulation in the rat pineal gland are due to corresponding changes in the activity of cytosolic and particulate guanylate cyclase.J. Neurochem. 592081–2086.

    PubMed  Google Scholar 

  • Spessert, R., Layes, E., and Vollrath, L. (1993). Adrenergic stimulation of cyclic GMP formation requires NO-dependent activation of cytosolic guanylate cyclase in rat pinealocytes.J. Neurochem. 61138–143.

    PubMed  Google Scholar 

  • Stankov, B., Cimino, M., Marini, P., Lucini, V., Fraschini, F., and Clementi, F. (1993). Identification and functional significance of nicotinic cholinergic receptors in the rat pineal gland.Neurosci. Lett. 156131–134.

    PubMed  Google Scholar 

  • Sugden, D. (1989). Melatonin biosynthesis in the mammalian pineal gland.Experientia 45922–932.

    PubMed  Google Scholar 

  • Sugden, D. (1990). 5-Hydroxytryptamine amplifiesβ-adrenergic stimulation of N-acetyltransferase activity in rat pinealocytes.J. Neurochem. 551655–1658.

    PubMed  Google Scholar 

  • Taylor, R. L., Albuquerque, M. L. C., and Burt, D. R. (1980). Muscarinic receptors in pineal.Life Sci. 262195–2200.

    PubMed  Google Scholar 

  • Unkila, M., Pohjanvirta, P., MacDonald, E., and Tuomisto, J. (1994). Characterization of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced brain serotonin metabolism in the rat.Eur. J. Pharmacol. Env. Toxicol. Pharmacol. Sect. 270157–166.

    Google Scholar 

  • Valtonen, M., Laitinen, J. T., and Eriksson, L. (1993). Renal melatonin excretion in sheep is enhanced by water diuresis.J. Endocrinol. 138445–450.

    PubMed  Google Scholar 

  • Vollrath, L. (1973). Synaptic ribbons of a mammalian pineal gland: Circadian changes.Z. Zellforsch. 145171–183.

    PubMed  Google Scholar 

  • Wada, E., Wada, K., Boulter, J., Deneris, E., Heinemann, S., Patrick, J., and Swanson, L. W. (1989). Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: A hybridization histochemical study in the rat.J. Comp. Neurol. 284314–335.

    PubMed  Google Scholar 

  • Yau, K.-W. (1994). Cyclic nucleotide-gated channels: An expanding new family of ion channels.Proc. Natl. Acad. Sci. USA 913481–3483.

    PubMed  Google Scholar 

  • Zatz, M. (1989). Relationship between light, calcium influx, and cAMP in the acute regulation of melatonin production by cultured chick pineal cells.Brain Res. 47714–18.

    PubMed  Google Scholar 

  • Zatz, M., and Mullen, D. (1988). Does calcium influx regulate melatonin production through the circadian pacemaker in chick pineal cells? Effects of nitrendipine, BAY K 8644, Co2+, Mn2+ and low external Ca2+.Brain Res. 463305–316.

    PubMed  Google Scholar 

  • Zawilska, J. B., and Nowak, J. Z. (1990). Calcium influx through voltage-sensitive calcium channels regulates in vivo serotonin N-acetyltransferase (NAT) activity in hen retina and pineal glands.Neurosci. Lett. 11817–20.

    PubMed  Google Scholar 

  • Zhao, Z.-Y., and Touitou, Y. (1994). Pineal perifusion with calcium channel blockers inhibits differently daytime and nighttime melatonin production in rat.Mol. Cell. Endocrinol. 101189–196.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laitinen, J.T., Laitinen, K.S.M. & Kokkola, T. Cholinergic signaling in the rat pineal gland. Cell Mol Neurobiol 15, 177–192 (1995). https://doi.org/10.1007/BF02073327

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02073327

Key words

Navigation