Hyperfine Interactions

, Volume 93, Issue 1, pp 1777–1782 | Cite as

Silica-supported copper-iron catalysts for hydrogenolysis reactions characterized by Mössbauer spectroscopy

  • J. van Beijnum
  • A. A. van der Horst
  • J. W. Geus
  • A. M. van der Kraan
Catalysis and Corrosion


A special preparation procedure has been developed to provide a very uniform distribution of iron throughout the copper precursor supported on silica. The best performance for hydrogenolysis of methyl acetate has been obtained for a catalyst prepared in a one-step procedure, in which iron(III) and copper(II) were injected together into a suspension of silica at a constant pH level. It is found that the main part of the iron has been incorporated into the formed copper hydrosilicate. After reduction and under reaction conditions, only about 6% of the iron atoms are in the Fe0 state. This Fe0 is expected to be responsible for the enhancement of the catalyst activity in hydrogenation and hydrogenolysis reactions.


Iron Copper Catalyst Activity Uniform Distribution Main Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C.L. Thomas,Catalytic Processes and Proven Catalysts (Academic Press, New York, 1970).Google Scholar
  2. [2]
    K. Christmann, Surf. Sci. Rep. 9(1988)1.Google Scholar
  3. [3]
    O.P. van Pruissen, M.MM. Dings, E. Boellaard, O.L.J. Gijzeman and J.W. Geus, Appl. Surf. Sci. 27(1986)24.Google Scholar
  4. [4]
    O.P. van Pruissen, O.L.J. Gijzeman and J.W. Geus, Appl. Surf. Sci. 29(1987)317.Google Scholar
  5. [5]
    O.P. van Pruissen, M.M.M. Dings and O.L.J. Gijzeman, Surf. Sci. 179(1987)377.Google Scholar
  6. [6]
    J.H. Sinfelt, W.F. Taylor and D.J.C. Yates, J. Phys. Chem. 69(1965)95.Google Scholar
  7. [7]
    J.H. Sinfelt, Adv. Catal. 23(1973)91.Google Scholar
  8. [8]
    J. van Veihnum, Ph.D. Thesis, University of Utrecht, Utrecht, The Netherlands (1991).Google Scholar
  9. [9]
    J.W. Niemantsverdriet, C.F.J. Flipse, A.M. van der Kraan and J.J. van Loef, Appl. Surf. Sci. 10(1982)302.Google Scholar
  10. [10]
    A.M. van der Kraan and J.W. Niemantsverdriet, in:Industrial Applications of the Mössbauer Effect, eds. G.J. Long and J.G. Stevens (Plenum Press, New York, 1986) p. 609.Google Scholar
  11. [11]
    W. Kündig, K.J. Ando, R.H. Lindquist and G. Constabaris, Czech. J. Phys. B17(1967)467.Google Scholar
  12. [12]
    A.M. van der Kraan, Phys. Stat. Sol. (a) 18(1973)215.Google Scholar
  13. [13]
    A.F.H. Wielers, A.J.H.M. Kock, C.E.C.A. Hop, J.W. Geus and A.M. van der Kraan, J. Catal. 117(1989)1.Google Scholar
  14. [14]
    C.J.G. van der Grift, A. Mulder and J.W. Geus, Appl. Catal. 60(1990)181.Google Scholar
  15. [15]
    C.J.G. van der Grift, P.A. Elberse, A. Mulder and J.W. Geus, Appl. Catal. 59(1990)275.Google Scholar
  16. [16]
    M.C. Van Ossterwijck-Gastuche, C.R. Acad. Sci. Paris 271(1970)1837.Google Scholar
  17. [17]
    M.C. Van Oosterwijck-Gastuche, Ph.D. Thesis, Luik, Belgium (1974).Google Scholar
  18. [18]
    W.J.J. van der Wal, Ph.D. Thesis, University of Utrecht, Utrecht, The Netherlands (1987).Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • J. van Beijnum
    • 2
  • A. A. van der Horst
    • 1
  • J. W. Geus
    • 2
  • A. M. van der Kraan
    • 1
  1. 1.Interfacultair Reactor InstituutDelft University of TechnologyJB DelftThe Netherlands
  2. 2.Department of Inorganic ChemistryUniversity of UtrechtTB UtrechtThe Netherlands

Personalised recommendations