Advertisement

Hyperfine Interactions

, Volume 93, Issue 1, pp 1621–1625 | Cite as

57Fe and57Co Mössbauer study of suppression of superconductivity in PrBa2Cu3O7−d

  • E. Kuzmann
  • M. Gal
  • Z. Homonnay
  • S. Nagy
  • Gy. Vankó
  • A. Vértes
Superconductivity

Abstract

57Fe and57Co Mössbauer spectroscopy and X-ray diffractometry were used to study57Fe- and57Co-substituted PrBa2Cu3O7−d samples. Our most striking result is that the isomer shifts belonging to both Co and Fe at four- and five-coordinated Cu(1) sites in the PrBa2Cu3O7−d cuprate are significantly higher than those observed for the superconducting 1-2-3 compounds. This result is considered as being a consequence of suppression of superconductivity because the extra electrons from Pr fill in the holes in Cu-O planes due to the valence state of Pr higher than 3+ and due to hybridization of Pr-Cu-O orbitals, via the charge transfer mechanism between the Cu(2)-O planes and Cu(1)-O chains. Our results give evidence of the existence of the charge transfer mechanism between the planes and the chains, and of its important role in controlling the superconductivity with a charge reservoir behavior of the Cu(1)-O chains.

Keywords

Spectroscopy Thin Film Charge Transfer Valence State Isomer Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Nowik, M. Kowitt, I. Felner and E.R. Bauminger, Phys. Rev. B38(1988)6677.Google Scholar
  2. [2]
    Z. Tomkowicz, J. Zukrowski, J. Prevoznik, A. Szytula, M. Balanda and A. Bajorek, Physica C184(1991)244.Google Scholar
  3. [3]
    E. Kuzmann, Z. Homonnay, S. Nagy, M. Gál and A. Vértes,ISIAME '92, Nucl. Instr. Meth. B76(1993)328.Google Scholar
  4. [4]
    Z. Homonnay, E. Kuzmann, M. Gál, S. Nagy, A. Vértes, L. Pöppl, A. Nath and Gy. Vankó, Physica C209(1993)137.Google Scholar
  5. [5]
    Z. Homonnay, A. Nath, Y. Wei and T. Jiang, Physica C174(1991)223.Google Scholar
  6. [6]
    I.S. Lyubutin, V.K. Terziev, E.M. Smirnovskaya and A.Ya. Shapiro, Physica C169(1990)361.Google Scholar
  7. [7]
    E. Kuzmann, S. Nagy, Z. Homonnay, A. Vértes, I. Halász, M. Gál, B. Csákvári, K. Torkos, J. Bánkuti, I. Kirschner, Y. Wei and A. Nath, Struct. Chem. 2(1991)267.Google Scholar
  8. [8]
    S.K. Malik, C.V. Tomy and P. Bhargava, Phys. Rev. B44(1991)7042.Google Scholar
  9. [9]
    M. Guillaume, P. Allenspach, J. Mesot, B. Roessli, U. Staub, P. Fischer and A. Furrer, Z. Phys., in press.Google Scholar
  10. [10]
    R.J. Cava, Science 247(1990)652.Google Scholar
  11. [11]
    H. Maletta, Physica C169(1990)371.Google Scholar
  12. [12]
    A.A. Moolenaar, P.C.M. Gubbens, J.-J. van Loef, M.J.V. Menken and A.A. Menovsky, these Proceedings, Hyp. Int.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • E. Kuzmann
    • 1
  • M. Gal
    • 2
  • Z. Homonnay
    • 1
  • S. Nagy
    • 1
  • Gy. Vankó
    • 1
  • A. Vértes
    • 1
  1. 1.Department of Nuclear ChemistryEötvös Loránd UniversityBudapestHungary
  2. 2.Department of General and Inorganic ChemistryEötvös Loránd UniversityBudapestHungary

Personalised recommendations