Advertisement

Evolutionary Ecology

, Volume 1, Issue 4, pp 363–378 | Cite as

Temporal resource variability and the habitat-matching rule

  • G. M. Recer
  • W. U. Blanckenhorn
  • J. A. Newman
  • E. M. Tuttle
  • M. L. Withiam
  • T. Caraco
Papers

Summary

The ideal free distribution of competitors in a heterogeneous environment often predicts habitat matching, where the equilibrium number of consumers in a patch is proportional to resource abundance in that patch. We model the interaction between habitat matching and temporal variation in resource abundance. In one patch the rate of resource input follows a Markov chain; a second patch does not vary temporally. We predict patch use by scaling transition rates in the variable patch to the time that consumers require to respond to changes in rates of resource input. If consumers respond very quickly, habitat matching tracks temporal variability. If resource input fluctuates faster than consumers respond, habitat matching averages over the equilibrium of the Markov chain. Tracking and averaging produce the same mean resource consumption for individuals, but long-term mean occupation of the patches differs. When habitat matching tracks temporal variability in resources, consumer density in the variable patch has a lower mean and a higher variance than when habitat matching reflects only average rates of resource input.

We tested our model by feeding free-living mallard ducks (Anas platyrynchos) at two artificial patches. The foragers' behavior satisfied the quantitative predictions of the model in each of two experiments.

Keywords

Habitat matching ideal free theory mallard ducks (Anas platyrynchosstable spatial dispersion temporal resource variability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, J. S. and Rosenzweig, M. L. (1986) Habitat selection in slowly regenerating environments.J. Theor. Biol. 123, 151–171.Google Scholar
  2. Boyce, M. S. and Daley, D. J. (1980) Population tracking of fluctuating environments and natural selection for tracking ability.Amer. Natur. 115, 480–491.Google Scholar
  3. Campanella, P. J. and Wolf, L. L. (1974) Temporal leks as a mating system in a temperate zone dragonfly (Odonata: Anisoptera) 1:Plathemis lydia (Drury).Behavior. 51, 49–87.Google Scholar
  4. Caraco, T. (1980a) Stochastic dynamics of avian foraging flocks.Amer. Natur. 115, 262–275.Google Scholar
  5. Caraco, T. (1980b) On foraging time allocation in a stochastic environment.Ecology 61, 119–128.Google Scholar
  6. Caraco, T. and Brown, J. L. (1986) A game between communal breeders: when is food-sharing stable?J. Theor. Biol. 118, 379–393.Google Scholar
  7. Caraco, T. and Gillespie, R. G. (1986) Risk-sensitivity: foraging mode in an ambush predator.Ecology 67, 1180–1185.Google Scholar
  8. Caraco, T., Martindale, S. and Whittam, T. S. (1980) An empirical demonstration of risk-sensitive foraging preferences.Anim. Behav. 28, 820–830.Google Scholar
  9. Clark, C. W. and Mangel, M. (1986) The evolutionary advantages of group foraging.Theor. Pop. Biol. 30, 45–75.Google Scholar
  10. Davies, N. B. and Houston, A. I. (1984) Territory economics. InBehavioural Ecology: An Evolutionary Approach, 2nd Edn (J. R. Krebs and N. B. Davies, eds) pp. 148–169. Blackwell, Oxford, UK.Google Scholar
  11. DeGroot, M. H. (1970)Optimal Statistical Decisions 489 pp. McGraw-Hill, New York.Google Scholar
  12. Denno, R. F. (1983) Tracking variable host plants in space and time. InVariable Plants and Herbivores in Natural and Managed Systems (R. F. Denno and M. S. McClure, eds) pp. 291–341. Academic Press, New York.Google Scholar
  13. Fagen, R. (1987) A generalized habitat matching rule.Evol. Ecol. 1, 5–10.Google Scholar
  14. Fretwell, S. D. (1972)Populations in a Seasonal Environment 217 pp. Princeton University Press, USA.Google Scholar
  15. Giffin, W. C. (1978)Queueing: Basic Theory and Applications 356 pp. Grid, Columbus, Ohio, USA.Google Scholar
  16. Gillespie, J. (1974) The role of environmental grain in the maintenance of genetic variation.Amer. Natur. 108, 831–836.Google Scholar
  17. Gillespie, R. G. and Caraco, T. (1987) Risk-sensitive foraging strategies of two spider populations.Ecology,68, 887–899.Google Scholar
  18. Godin, J.-G. J. and Keenleyside, M. H. A. (1984) Foraging on patchily distributed prey by cichlid fish (Teleostei Sichlidae): a test of the ideal free distribution theory.Anim. Behav. 32, 120–131.Google Scholar
  19. Goss-Custard, D. (1985) Foraging behaviour of wading birds and the carrying capacity of estuaries. InBehavioural Ecology: Ecological Consequences of Adaptive Behaviour (R. M. Sibly and R. H. Smith, eds) pp. 169–188. Blackwell, Oxford, UK.Google Scholar
  20. Harper, D. G. C. (1982) Competitive foraging in mallards: ‘ideal free’ ducks.Anim. Behav. 30, 574–584.Google Scholar
  21. Houston, A. I. and McNamara, J. M. (1987) Switching between resources and the Ideal Free Distribution.Anim. Behav. 35, 301–302.Google Scholar
  22. Lefebvre, L. (1983) Equilibrium distribution of feral pigeons at multiple food sources.Behav. Ecol. Sociobiol. 12, 11–17.Google Scholar
  23. Lendrem, D. (1986)Modelling in Behavioural Ecology: An Introductory Text 214 pp. Croom Helm, London.Google Scholar
  24. Levin, S. A. and Paine, R. T. (1974) Disturbance, patch formation, and community structure.Pr. Nat. Acad. Sci. (US) 71, 2744–2747.Google Scholar
  25. McNamara, J. and Houston, A. (1982) Short-term behaviour and lifetime fitness. InFunctional Ontogeny (McFarland, D., ed.) pp. 60–87. Pitman, London.Google Scholar
  26. McNaughton, S. J. and Wolf, L. L. (1970) Dominance and the niche in ecological systems.Science 167, 131–9.PubMedGoogle Scholar
  27. Milinski, M. (1979) An evolutionarily stable feeding strategy in sticklebacks.Z. Tierpsychol. 51, 36–40.Google Scholar
  28. Milinski, M. (1984) Competitive resource sharing: an experimental test of a learning rule for ESSs.Anim. Behav. 32, 233–42.Google Scholar
  29. Newman, J. A. and Caraco, T. (1987) Foraging, predation hazard, and patch use in grey squirrels.Anim. Behav.,35, 1804–13.Google Scholar
  30. Neter, J. and Wasserman, W. (1974)Applied Linear Statistical Models 474 pp. R. D. Irwin, Homewood, Illinois, USA.Google Scholar
  31. Parker, G. A. (1978) Searching for mates. InBehavioural Ecology: An Evolutionary Approach, 1st Edn (J. R. Krebs and N. B. Davies, eds) pp. 214–44. Blackwell, Oxford, UK.Google Scholar
  32. Parker, G. A. (1984) Evolutionarily stable strategies. InBehavioural Ecology: An Evolutionary Approach, 2nd Edn (J. R. Krebs and N. B. Davies, eds) pp. 30–61. Blackwell, Oxford, UK.Google Scholar
  33. Parker, G. A. and Sutherland, W. J. (1986) Ideal free distributions when individuals differ in competitive ability: phenotype-limited ideal free models.Anim. Behav. 34, 1222–42.Google Scholar
  34. Pimm, S. L. (1978) An experimental approach to the effects of predictability on community structure.Amer. Zool. 18, 797–808.Google Scholar
  35. Pulliam, H. R. and Caraco, T. (1984) Living in groups: is there an optimal group size? InBehavioural Ecology: An Evolutionary Approach, 2nd Edn (J. R. Krebs and N. B. Davies, eds) pp. 122–47. Blackwell, Oxford, UK.Google Scholar
  36. Real, L. and Caraco, T. (1986) Risk and foraging in stochastic environments.Ann. Rev. Ecol. Syst. 17, 371–90.Google Scholar
  37. Regelmann, K. (1984) Competitive resource sharing: a simulation model.Anim. Behav. 32, 226–32.Google Scholar
  38. Rosenzweig, M. L. (1979) Three probable evolutionary causes for habitat selection. InContemporary Quantitative Ecology and Related Ecometrics (G. P. Patil and M. L. Rosenzweig, eds) pp. 49–60. International Co-operative Publishing House, Burtonsville, MD, USA.Google Scholar
  39. Rosenzweig, M. L. (1981) A theory of habitat selection.Ecology 62, 327–35.Google Scholar
  40. Rubenstein, D. I. (1982) Risk, uncertainty and evolutionary strategies. InCurrent Problems in Sociobiology (King's College Sociobiology Group, eds) pp. 1–17. Cambridge University Press, Cambridge, UK.Google Scholar
  41. Sommers, P. M. and Conlisk, J. (1979) Eigenvalue immobility measures for Markov chains.J. Math. Sociol. 6, 169–234.Google Scholar
  42. Stephens, D. W. (1987) On economically tracking a variable environment.Theor. Pop. Biol.,32, 15–25.Google Scholar
  43. Stephens, D. W. and Charnov, E. L. (1982) Optimal foraging: some simple stochastic models.Behav. Ecol. Sociobiol. 10, 251–63.Google Scholar
  44. Stephens, D. W. and Krebs, J. R. (1986)Foraging Theory 247 pp. Princeton University Press, Princeton, USA.Google Scholar
  45. Sutherland, W. J. and Parker, G. A. (1985) Distribution of unequal competitors. InBehavioural Ecology: Ecological Consequence of Adaptive Behaviour (R. M. Sibly and R. H. Smith, eds) pp. 255–74. Blackwell, Oxford, UK.Google Scholar
  46. Templeton, A. R. and Rothman, E. D. (1978) Evolution and fine-grained environmental runs. InFoundations and Applications of Decision Theory, Vol. II. (A. Hooker, B. Leach and C. McClennen, eds) pp. 131–83. D. Reidel, Dordrecht, Holland.Google Scholar
  47. Vehrencamp, S. L. (1983) A model for the evolution of despotic versus egalitarian societies.Anim. Behav. 31, 667–82.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • G. M. Recer
    • 1
  • W. U. Blanckenhorn
    • 1
  • J. A. Newman
    • 1
  • E. M. Tuttle
    • 1
  • M. L. Withiam
    • 1
  • T. Caraco
    • 1
  1. 1.Behavioral Ecology Group, Biological SciencesState University of New YorkAlbanyUSA

Personalised recommendations