Advertisement

Theoretical and Mathematical Physics

, Volume 106, Issue 3, pp 370–384 | Cite as

Possibility of a reduced description for the spin dynamics of anisotropic Heisenberg paramagnets and the shape of NMR spectra in solids

  • V. L. Bodneva
  • A. A. Lundin
  • A. A. Milyutin
Article

Abstract

The problem of the shape of the NMR line in solids has been solved in quadratures. Although the constructed solution is based on exact results obtained by the authors, the possibility for a correct description of experimental data on the basis of lower approximations of the theory essentially depends on the crystal lattice type. Only the spectra of crystals with ordinary dense lattices (rather than, e.g., quasi-one-dimensional systems) can be adequately described in lower approximations, which is a very urgent problem. Comparison of theoretical and experimental results has resulted in good agreement.

Keywords

Experimental Data Crystal Lattice Lower Approximation Exact Result Lattice Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Resibois and M. De Leener,Phys. Rev.,152, 305; 318 (1966).Google Scholar
  2. 2.
    G. Sauerman and D. Wiegand,Physica,103B, 309 (1980).Google Scholar
  3. 3.
    A. A. Lundin and A. B. Makarenko,Zh. Eksp. Teor. Fiz.,87, 999 (1984); A. A. Lundin,Zh. Eksp. Teor. Fiz.,102, 352 (1992).Google Scholar
  4. 4.
    V. E. Zobov,Teor. Mat. Fiz.,84, 111–119 (1990).Google Scholar
  5. 5.
    M. Bohm et al.,Phys. Rev. B,49, 417 (1994).Google Scholar
  6. 6.
    V. E. Zobov and A. A. Lundin,Zh. Eksp. Teor. Fiz.,106, 1097 (1994).Google Scholar
  7. 7.
    N. Bloembergen, E. M. Purcell, and R. V. Pound,Phys. Rev.,73, 679 (1948).Google Scholar
  8. 8.
    A. Abragam,Principles of Nuclear Magnetism [Russian translation] (Chaps. 4, 10), Mir, Moscow (1963).Google Scholar
  9. 9.
    P. W. Anderson and P. R. Weiss,Rev. Mod. Phys.,25, 269 (1953);J. Phys. Soc. (Japan),9, 316 (1954).Google Scholar
  10. 10.
    R. Kubo and K. Tomita,J. Phys. Soc. (Japan),9, 888 (1954).Google Scholar
  11. 11.
    I. J. Lowe and R. E. Norberg,Phys. Rev.,107, 46 (1957).Google Scholar
  12. 12.
    A. A. Lundin, A. V. Makarenko, and V. E. Zobov,J. Phys.: Condens. Matter,2, 10131 (1990).Google Scholar
  13. 13.
    F. Lado, J. D. Memory, and G. W. Parker,Phys. Rev. B,4, 1406 (1971).Google Scholar
  14. 14.
    A. A. Lundin and B. N. Provotorov,Zh. Eksp. Teor. Fiz.,70, 2201 (1976).Google Scholar
  15. 15.
    N. Dunford and D. Schwartz,Linear Operators [Russian translation] (Part 1, Ch. VII), Izd. Inostr. Lit., Moscow (1962).Google Scholar
  16. 16.
    L. A. Liusternik and V. I. Soboloev,Elements of the Functional Analysis [in Russian], GITTL, Moscow-Leningrad (1951).Google Scholar
  17. 17.
    A. A. Samarskii and A. V. Gulin,Numerical Methods [in Russian], Nauka, Moscow (1989).Google Scholar
  18. 18.
    M. A. Lavrentiev and B. V. Shabat,Complex Variable Theory Methods [in Russian], Nauka, Moscow (1973).Google Scholar
  19. 19.
    A. A. Lundin and A. V. Makarenko,Fiz. Tverd. Tela,28, 2885 (1986).Google Scholar
  20. 20.
    A. Sur and I. J. Lowe,Phys. Rev. B,12, 4597 (1975).Google Scholar
  21. 21.
    M. Engelsberg and I. J. Lowe,Phys. Rev. B,10, 822 (1974).Google Scholar
  22. 22.
    V. D. Fedotov and N. A. Abdrashitova,Vysokomolek. Soedin.,22A, 624 (1980).Google Scholar
  23. 23.
    M. Engelsberg and I. J. Lowe,Phys. Rev. B,12, 3547 (1975).Google Scholar
  24. 24.
    M. Engelsberg and Chao Nai-Cheng,Phys. Rev. B,12, 5043 (1975). Translated by M. V. Chekhova.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • V. L. Bodneva
    • 1
  • A. A. Lundin
    • 1
  • A. A. Milyutin
    • 1
  1. 1.N. N. Semenov Institute of Chemical PhysicsUSSR

Personalised recommendations