Theoretical and Mathematical Physics

, Volume 106, Issue 3, pp 328–332 | Cite as

A partial resummation of diagrams in the two-dimensional lattice fermion model with Pauli-Villars regularization

  • N. V. Zverev
  • A. A. Slavnov


The polarization operator and axial current are obtained by means of a partial resummation in the Schwinger two-dimensional lattice SLAC-fermion model with Pauli-Villars regularization. It is shown that the resummation procedure does not change the result obtained earlier in [1] for the fermion model under consideration.


Polarization Operator Axial Current Fermion Model Lattice Fermion Lattice Fermion Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Slavnov,Nucl. Phys. (Proc. Suppl.) B,42, 166 (1995).Google Scholar
  2. 2.
    S. Drell, M. Weinstein, and S. Yankielovitz,Phys. Rev. D,14, 487 (1976); 1627.Google Scholar
  3. 3.
    K. Wilson,Phys. Rev. D,10, 2445 (1974).Google Scholar
  4. 4.
    K. Wilson, in:New Phenomena in Subnuclear Physics (A. Zichichi, ed.), Plenum Press, New York (1977).Google Scholar
  5. 5.
    J. Smit,Nucl. Phys. B,175, 307 (1980).Google Scholar
  6. 6.
    P. Swift,Phys. Lett. B,145, 256 (1984).Google Scholar
  7. 7.
    J. Kogut and L. Susskind,Phys. Rev. D,14, 395 (1975).Google Scholar
  8. 8.
    L. Karsten and J. Smit,Nucl. Phys. B,144, 536 (1978).Google Scholar
  9. 9.
    L. Karsten and J. Smit,Phys. Lett. B,85, 100 (1979).Google Scholar
  10. 10.
    J. Rabin,Phys. Rev. D,24, 3218 (1981).Google Scholar
  11. 11.
    G. Bodwin and E. Kovacs,Phys. Rev. D,35, 3198 (1987).Google Scholar
  12. 12.
    J. Schwinger,Phys. Rev.,128, 2425 (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • N. V. Zverev
    • 1
  • A. A. Slavnov
    • 1
  1. 1.V. A. Steklov Mathematical Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations