Theoretical and Mathematical Physics

, Volume 107, Issue 2, pp 686–697 | Cite as

Positive definiteness of the gravitational radiation intensity in the theory of gravity with a nonzero graviton mass

  • Yu. M. Loskutov
Article

Abstract

A version of the theory of gravity is considered where the graviton mass is nonzero, and the gravitation radiation flux from an arbitrary spatially-bounded source is positive definite. The relation between energy losses by emission and the work of the source is established. It is shown that the total work includes the part produced by the interaction of the source with the radiation field and the part produced by the self-action of the field. The total work proves to be positive definite. The general form of the spectrum-angular distribution is obtained, accounting for the spin and polarization states. For spherically symmetric sources, the states with zero spin and zero projection of spin two on the momentum contribute to the emission.

Keywords

Radiation Energy Loss Polarization State Radiation Intensity Radiation Field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. G. Boulware and S. Deser,Phys. Rev. D,6, 3368 (1972).Google Scholar
  2. 2.
    W. Pauli and M. Fierz,Proc. Roy. Soc.,A73, 211 (1939); W. Thirring,Ann. Phys.,16, 96 (1961).Google Scholar
  3. 3.
    P. G. O. Freund, A. Maheshwari, and E. Schonberg,Astroph. J.,157, 857 (1969).Google Scholar
  4. 4.
    C. Fronsdal,Suppl. Nuovo Cim.,9, 416 (1958).Google Scholar
  5. 5.
    K. J. Barnes,J. Math. Phys.,6, 788 (1965).Google Scholar
  6. 6.
    L. D. Landau and E. M. Lifshitz,Field Theory [in Russian], Nauka, Moscow (1988).Google Scholar
  7. 7.
    A. A. Logunov and M. A. Mestvirishvili,The Relativistic Theory of Gravity [in Russian], Nauka, Moscow (1989).Google Scholar
  8. 8.
    A. Logunov, Yu. M. Loskutov, and M. A. Mestvirishvili,Usp. Fiz. Nauk,155, No. 3, 369 (1988).Google Scholar
  9. 9.
    A. A. Logunov, Yu. M. Loskutov, and M. A. Mestvirishvili,Progr. Theor. Phys.,80, No. 6, 1005 (1988);Intern. J. Of Mod. Phys. A.,3, 2067 (1988).Google Scholar
  10. 10.
    A. A. Logunov,Teor. Mat. Fiz.,101, 3 (1994);Uspekhi Fiz. Nauk,165, No. 2, 187.Google Scholar
  11. 11.
    A. A. Logunov and Yu. M. Loskutov,Dokl. Acad. Nauk USSR,305, 848 (1989).Google Scholar
  12. 12.
    Yu. M. Loskutov,Teor. Mat. Fiz.,82, 304 (1990).Google Scholar
  13. 13.
    Yu. M. Loskutov,Vestn. Mosk. Gos. Univ., Ser. fiz. astr., No. 4, 49 (1991).Google Scholar
  14. 14.
    Yu. M. Loskutov,Proc. of the Sixth Marcel Grossmann Meeting on Gen. Rel. Part B, Japan, Kyoto (1991), p. 1658.Google Scholar
  15. 15.
    Yu. M. Loskutov,Teor. Mat. Fiz.,94, 515 (1993).Google Scholar
  16. 16.
    Yu. M. Loskutov,Zh. Exp. Teor. Fiz.,107, No. 2, 283 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Yu. M. Loskutov
    • 1
  1. 1.Moscow State UniversityUSSR

Personalised recommendations