Advertisement

Theoretical and Mathematical Physics

, Volume 107, Issue 2, pp 561–567 | Cite as

Poisson reduction of the lattice Kac-Moody algebra

  • G. E. Arutyunov
  • P. B. Medvedev
Article
  • 35 Downloads

Abstract

The Poisson reduction of the SL(N) lattice Kac-Moody algebra under the action of the maximum nilpotent subgroup of SL(N) is considered. Poisson brackets on the reduced phase space are constructed. For N=2 in the continuous limit, their relation to the Gelfand-Fuchs cocycle is pointed out.

Keywords

Phase Space Poisson Bracket Continuous Limit Nilpotent Subgroup Reduce Phase Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Yu. Reshetikhin and M. A. Semenov-Tian-Shansky,Lett. Math. Phys.,19, 133 (1990).Google Scholar
  2. 2.
    A. Yu. Alekseev, L. D. Faddeev, M. A. Semenov-Tian-Shansky, and A. Yu. Volkov, “The unravelling of the quantum group structure in the WZNW theory," Preprint TH-5981/91, CERN (1991).Google Scholar
  3. 3.
    A. Yu. Alekseev, L. D. Faddeev, and M. A. Semenov-Tian-Shansky,Comm. Math. Phys.,149, 335 (1992).Google Scholar
  4. 4.
    F. Falceto and K. J. Gawedzki,Geom. Phys.,11, 251 (1993).Google Scholar
  5. 5.
    P. Goddard, A. Kent, and D. Olive,Comm. Math. Phys.,103, 105–119 (1986).Google Scholar
  6. 6.
    V. G. Drinfel'd and V. V. Sokolov,Dokl. Akad. Nauk SSSR,284, 11–16 (1985).Google Scholar
  7. 7.
    A. V. Antonov, A. A. Belov, and K. D. Chaltikian, “Lattice conformal theories and their integrable perturbations,” Preprint LANDAU-TMP-95-02, hep-th/9505155, Landau Inst. Theor. Phys., Moscow (1995).Google Scholar
  8. 8.
    B. Feigin and E. Frenkel,Phys. Lett.,B276, 79 (1992).Google Scholar
  9. 9.
    M. A. Semenov-Tian-Shansky,Publ. RIMS Kyoto Univ.,21, 1237 (1985).Google Scholar
  10. 10.
    M. A. Semenov-Tian-Shansky,Teor. Mat. Fiz.,93, 302–329 (1992).Google Scholar
  11. 11.
    V. G. Drinfel'd, in:Proceedings of the ICM (A. Gleason, ed.), Vol. 1, Amer. Math. Soc., Providence, Rhode Island (1987), p. 798.Google Scholar
  12. 12.
    N. Yu. Reshetikhin and M. A. Semenvo-Tian-Shansky,Geometry and Physics,5, 533 (1988). Translated by G. E. Arutyunov and P. B. Medvedev.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • G. E. Arutyunov
    • 1
    • 2
  • P. B. Medvedev
    • 1
    • 2
  1. 1.Steklov Mathematical InstituteMoscowRussia
  2. 2.Institute of Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations