Reaction Kinetics and Catalysis Letters

, Volume 36, Issue 1, pp 39–46 | Cite as

Coked reforming catalysts: Self-regeneration by residual hydrogen

  • F. Frusteri
  • P. Tsiakaras
  • A. Parmaliana
  • A. Mezzapica
  • N. Giordano


The deactivation and subsequent self-regeneration of several Pt/γ−Al2O3/honeycomb reforming catalysts have been investigated. Catalytic activity in the dehydrogenation of methylcyclohexane (MCH), taken as reaction model, has been evaluated at 400 °C in a continuous flow microreactor. The determining role of surface chlorine during the H2 self-regeneration of catalysts is discussed. A catalyst with ca. 0.5% C1 shows complete self-regeneration. A regeneration mechanism, involving the spillover of residual hydrogen, is proposed.


Hydrogen Physical Chemistry Al2O3 Catalysis Chlorine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Исследовали дезактивацию и последующее саморегенерирование некоторых Pt/γ−Al2O3 катализаторов риформинга со структурой пчелинных сотен. Каталитическая активность в дегидрировании метилциклогексана, выбранного в качестве реакционной модели, была определена при 400°C и в проточном микрореакторе. Обсуждается решающая роль поверхностного хлора при водородном саморегенерировании катализатора. Катализатор с прибл. 0.5% Cl проявляет полное саморегенерирование. Предлагают механизм регенерирования, включающий в себя спиловер остаточного водорода.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. E. Wolf, E. E. Petersen: J. Catal.,46, 190 (1977)Google Scholar
  2. 2.
    D. L. Trimm: Chem. Eng. Proc.,18, 137 (1984)Google Scholar
  3. 3.
    S. M. Davis, F. Zaera, G. A. Somorjai: J. Catal.,77, 439 (1982)Google Scholar
  4. 4.
    V. K. Shum, J. B. Butt, W. M. H. Sachtler: Appl. Catal.,11, 151 (1984)Google Scholar
  5. 5.
    J. M. Parera, N. S. Figoli, E. L. Jablonski, M. R. Sad, J. N. Beltramini: “Catalyst Deactivation” (B. Delmon and G. F. Froment, Eds.) p. 571. Elsevier, Amsterdam 1980.Google Scholar
  6. 6.
    N. S. Figoli, M. R. Sad, J. N. Beltramini, E. L. Jablonski, J. M. Parera: Ind. Eng. Chem. Prod. Res. Dev.,19, 545 (1980)Google Scholar
  7. 7.
    B. J. Cooper, D. L. Trimm: in “Catalyst Deactivation” (B. Delmon and G. F. Froment Eds.), p. 63. Elsevier, Amsterdam 1980.Google Scholar
  8. 8.
    M. Chow, S. H. Park, W. M. H. Sachtler: Appl. Catal.,19, 349 (1985)Google Scholar
  9. 9.
    J. M. Parera, N. S. Figoli, E. M. Traffano, J. N. Beltramini, E. E. Martinelli: Appl. Catal.,5, 33 (1983)Google Scholar
  10. 10.
    J. B. Bournonville, G. Martino: in “Catalyst Deactivation” (B. Delmon and G. F. Froment, Eds.) p. 159. Elsevier, Amsterdam 1980.Google Scholar
  11. 11.
    A. Bishara, K. M. Murad, A. Stanislaus, M. Ismail, S. S. Hussain: Appl. Catal.,7, 351 (1983)Google Scholar
  12. 12.
    F. Frusteri, V. Barcellona, G. Mento, A. Parmaliana, N. Giordano: Ann. Chim. (Rome),75, 441 (1985)Google Scholar
  13. 13.
    A. Parmaliana, M. El Sawi, G. Mento, U. Fedele, N. Giordano: Appl. Catal.,7, 221 (1983)Google Scholar
  14. 14.
    K. Gishti, A. Iannibello, S. Marengo, G. Morelli, P. Tittarelli: Appl. Catal.,12, 381 (1984)Google Scholar
  15. 15.
    A. A. Castro, O. A. Scelza, E. R. Benvenuto, G. T. Baronetti, J. M. Parera: J. Catal.,69, 222 (1981)Google Scholar
  16. 16.
    A. H. Benke: Ph. D. Thesis, University of California, Berkeley, 1976.Google Scholar

Copyright information

© Akadémiai Kiadó 1988

Authors and Affiliations

  • F. Frusteri
    • 1
  • P. Tsiakaras
    • 1
  • A. Parmaliana
    • 1
  • A. Mezzapica
    • 2
  • N. Giordano
    • 2
  1. 1.Istituto di Chimica IndustrialeUniversità di MessinaMessinaItaly
  2. 2.Istituto CNR-TAE, Salita S. Lucia sopra Contesse, 39MessinaItaly

Personalised recommendations