Skip to main content
Log in

On physical interpretations of fractional integration and differentiation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Is there a relation between fractional calculus and fractal geometry? Can a fractional order system be represented by a causal dynamical model? These are the questions recently debated in the scientific community. The author intends to answer these questions. In the first part of the paper, some recently suggested models are reviewed and no convincing evidence is found for any dynamic model of a fractional order system having been built with the help of fractals. Linear filters with lumped constant parameters have a very limited use as approximations of fractional order systems. The model suggested in the paper is a state-space representation with parameters as functions of the independent variable. Regularization of fractional differentiation is considered and asymptotic error estimates, as well as simulation results, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Gorenflo and S. Vessela,Abel integral equations: analysis and applications, Springer-Verlag, Berlin (1991).

    Google Scholar 

  2. R. R. Nigmatullin, “The temporal fractional integral and its physical sense,” in:Géometrie Fractale et Hyperbolique Derivation Fractionnaire et Fractale: Applications dans les Science de l'Ingenieur et en Économie. Ecole d'été internationale. Document de Travail. Bordeaux, 3–4 Juillet 1994.

  3. H. Beyer and S. Kempfle, “Dämpfungsbeschreibung mittels gebrochener Abteilungen. Zeinschrift für Angewandte Mathematik und Mechanik,” (to appear).

  4. V. K. Weber,Research in integrodifferential equations in Kirgizia,16, 349–356 (1983);18, 301–305 (1985).

    Google Scholar 

  5. R. R. Nigmatullin,Theor. Math. Phys.,90, 242–257 (1992).

    Article  Google Scholar 

  6. R. Rutman,Teor. Mat. Fiz.,100, 476–478 (1994).

    Google Scholar 

  7. B. Ross and B. Rubin,personal communications.

  8. S. Kempfle, F. Mainardi, R. R. Nigmatullin, and B. Rubin,personal communications.

  9. M. Zähle, in:Topology, measures, and fractals (C. Bandtet al., eds.), Vol. 66, Akademie Verlag, Berlin (1992). p. 121–126; N. Patzschke and M. Zähle,Proc. Am. Math. Soc.,117, 137–144 (1993).

    Google Scholar 

  10. S. G. Samko, A. A. Kilbas, and O. I. Marichev,Integrals and Derivatives of Fractional Order and Some of Their Applications, Gordon and Breach, London (1993); (transl. from Russian, Nauka i Tekhnika, Minsk, 1987); V. Kiraykova,Generalized Fractional Calculus and Applications, Longman Sci. Tech., Harlow, Essex (1994).

    Google Scholar 

  11. C. Tricot, “Dérivation fractionnaire et dimension fractale,” Tech. Rep. 1532. CRM — Université de Montréal (1988).

  12. A. Oustaloup,Systéms Asservis d'Ordre Fractionnaire, Masson, Paris (1983);La Commande CRONE, Hermes, Paris (1991).

    Google Scholar 

  13. D. Matignon,Réprésentation en Variables d'État de Modéles de Guide d'Ondes avec Dérivation Dractionnaire, Thése IRCAM, Paris (1994).

    Google Scholar 

  14. R. Rutman, in:Theory and Practice of Geophysical Data Inversion (A. Vogelet al., eds.), Vieweg, Braunschwieg/Wiesbaden (1992), p. 49–71.

    Google Scholar 

  15. R. S. Andersen,J. Inst. Math. Appl.,17, 329–342 (1976); K. J. Bokasten,J. Opt. Soc. Am.,51, 943–947 (1961); C. D. Maldonaldo, A. P. Caron, and H. N. Olsen,J. Opt. Soc. Am.,55, 1247–1254 (1965); G. N. Minerbo and M. E. Levy,SIAM J. Numer. Anal.,6, 598–616 (1965); O. H. Nestor and H. N. Olsen,SIAM Rev.,2, 200–207 (1960).

    Google Scholar 

  16. S. G. Mikhlin,Multidimensional Singular Integrals and Integral Equations, Pergamon Press (1965).

  17. K. B. Oldham and J. Spanier,The Fractional Calculus. Academic Press, New York (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Republished from Teoreticheskaya i Matematicheskaya Fizika, Vol. 105, No. 3, pp. 393–404, December, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutman, R.S. On physical interpretations of fractional integration and differentiation. Theor Math Phys 105, 1509–1519 (1995). https://doi.org/10.1007/BF02070871

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02070871

Keywords

Navigation