Theoretical and Mathematical Physics

, Volume 106, Issue 1, pp 143–149 | Cite as

Soliton solutions of the Hamiltonian DSI and DSIII equations

  • F. Pempinelli
Article
  • 43 Downloads

Abstract

By introducing generalized Bäcklund Transformations depending on arbitrary functions, wave and localized soliton solutions of the Davey-Stewartson equations are generated. Moreover explicit soliton solutions of the Hamiltonian DSI and DSIII equations are obtained.

Keywords

Soliton Arbitrary Function Soliton Solution Localize Soliton Solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Boiti, J. Léon, L. Martina, and F. Pempinelli,Phys. Lett.,A 132, 432 (1988).Google Scholar
  2. 2.
    A. S. Fokas and P. M. Santini,Physica,D 44, 99 (1990).Google Scholar
  3. 3.
    M. Boiti, J. Léon, and F. Pempinelli,Inverse Problems,6, 715 (1990).Google Scholar
  4. 4.
    M. Boiti, L. Martina, O. K. Pashaev, and F. Pempinelli,Phys. Lett.,A 160, 55 (1991).Google Scholar
  5. 5.
    P. C. Sabatier,Inverse Problems,8, 263 (1992); P. C. Sabatier,Phys. Lett.,A 161, 345 (1992).Google Scholar
  6. 6.
    M. Boiti, F. Pempinelli, and P. C. Sabatier,Inverse Problems,9, 1 (1993).Google Scholar
  7. 7.
    F. Pempinelli, “Localized soliton solutions for Davey-Stewartson I and Davey-Stewartson III equations,” in:Application of analytic and geometric methods to nonlinear differential equations (P. A. Clarkson, ed.) (NATO ASI Series), Vol. C 413, Kluwer Acad. Publ., Dordrecth (1993), pp. 207–215.Google Scholar
  8. 8.
    M. Boiti, J. Léon, and F. Pempinelli,Jour. Math. Phys.,31, 2612 (1990).Google Scholar
  9. 9.
    A. S. Fokas and P. M. Santini,Phys. Rev. Lett.,63, 1329 (1989).Google Scholar
  10. 10.
    J. Hietarinta and R. Hirota,Phys. Lett.,A 145, 237 (1990).Google Scholar
  11. 11.
    R. Hernandez Heredero, L. Martinez Alonso, and E. Medina Reus,Phys. Lett.,A 152, 37 (1991).Google Scholar
  12. 12.
    C. R. Gilson and J. J. C. Nimmo,Proc. R. Soc. London,A 435, 339 (1991).Google Scholar
  13. 13.
    M. Boiti, J. Léon, and F. Pempinelli,Inverse Problems,7, 175 (1991).Google Scholar
  14. 14.
    M. Boiti, L. Martina, and F. Pempinelli, “Multidimensional Localized Solitons,,” (1993) (to appearin Chaos, Solitons and Fractals).Google Scholar
  15. 15.
    M. Boiti, J. Léon, M. Manna, and F. Pempinelli,Inverse Problems,2, 271 (1986); M. Boiti, J. Léon, M. Manna, and F. Pempinelli,Inverse Problems,3, 25 (1987).Google Scholar
  16. 16.
    C. L. Schultz and M. J. Ablowitz,Phys. Rev. Lett.,59, 2825 (1987).Google Scholar
  17. 17.
    P. P. Kulish and V. D. Lipovsky,Phys. Lett.,A 127, 413 (1988).Google Scholar
  18. 18.
    E. I. Shul'man,Theor. Math. Phys.,56, 720 (1984).Google Scholar
  19. 19.
    P. M. Santini and A. S. Fokas,Comm. Math. Phys.,115, 375 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • F. Pempinelli
    • 1
  1. 1.Dipartimento di Fisica dell'Università e Sezione INFNLecceItaly

Personalised recommendations