Theoretical and Mathematical Physics

, Volume 107, Issue 3, pp 825–834 | Cite as

Spurious solutions of Faddeev equations with central potentials

  • V. V. Pupyshev
Article

Abstract

Within the limits of the hyperharmonics approach, spurious solutions of the Faddeev differential equations are studied for a system of three distinguishable particles interacting via central potentials. The criterion for the existence of spurious solutions is proved. A straightforward way of constructing explicitly spurious solutions is suggested, and the results are illustrated by examples.

Keywords

Differential Equation Central Potential Faddeev Equation Distinguishable Particle Spurious Solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Faddeev,Mathematical Aspects for the Three-Body Problem in the Quantum Scattering Theory, Daniel Davey & Co., Inc., New York (1965).Google Scholar
  2. 2.
    L. D. Faddeev and S. P. Merkuriev,Quantum Theory for Several Particle Systems, Mathematical Physics and Applied Mathematics, Vol. 11, Kluwer Academic Publishers Group, Dordrecht (1993).Google Scholar
  3. 3.
    S. P. Merkuriev,Ann. Phys.,130, 395–426 (1980).Google Scholar
  4. 4.
    A. A. Kvitsinskii, Yu. A. Kuperin, S. P. Merkuriev, et al.,Fiz. Elem. Chast. At. Yadra,17, No. 2, 267–317 (1986).Google Scholar
  5. 5.
    A. A. Kvitsinskii, V. V. Kostrykin, and S. P. Merkuriev,Fiz. Elem. Chast. At. Yadra,21, No. 6, 1301–1359 (1990).Google Scholar
  6. 6.
    S. K. Adhikari and W. Glöckle,Phys. Rev.,C19, 616–630 (1979).Google Scholar
  7. 7.
    F. S. Levin,Ann. Phys.,130, 139–163 (1980).Google Scholar
  8. 8.
    J. W. Evans,J. Math. Phys.,22, 1672–1686 (1981).Google Scholar
  9. 9.
    J. W. Evans and D. K. Hoffman,J. Math. Phys.,22, 2858–2871 (1981).Google Scholar
  10. 10.
    S. L. Yakovlev, “Some spectral properties for the Faddeev matrix operator and its adjoint one,” Preprint LTPE Orsay 91/14 (1991).Google Scholar
  11. 11.
    J. F. Friar, B. F. Gibson, and G. L. Payne,Phys. Rev.,C22, 284–286 (1980).Google Scholar
  12. 12.
    V. V. Pupyshev,Teor. Mat. Fiz.,81, 86–93 (1989).Google Scholar
  13. 13.
    V. V. Pupyshev,Phys. Lett.,A140, No. 4, 151–154 (1989).Google Scholar
  14. 14.
    V. V. Pupyshev,Few Body System,8, No. 2, 105–122 (1990).Google Scholar
  15. 15.
    M. Fabre de la Ripelle and S. Y. Larsen,Few Body System,13, No. 3, 199–206 (1992).Google Scholar
  16. 16.
    R. I. Dzhibuti and N. B. Krupennikova,Method of Hyperspherical Functions in Few-Body Quantum Mechanics [in Russian], Metsniereba, Tbilisi (1984).Google Scholar
  17. 17.
    R. I. Dzhibuti and K. V. Shitikova,Method of Hyperspherical Functions in Atomic and Nuclear Physics [in Russian], Energoatomizdat, Moscow (1993).Google Scholar
  18. 18.
    L. C. Biedenharn and J. D. Louck,Angular Momentum in Quantum Physics: Theory and Applications, Encyclopedia of Mathematics and Its Applications, Vol. 8, Addison-Wesley, Reading (Massachusetts) (1981).Google Scholar
  19. 19.
    J. Raynal and J. Revai,Nuovo Cim.,A68, 612–622 (1970).Google Scholar
  20. 20.
    V. D. Efros,Yad. Fiz.,17, No. 1, 210–224 (1973).Google Scholar
  21. 21.
    P. Lancaster,Theory of Matrices, Academic Press, New York-London (1969).Google Scholar
  22. 22.
    A. Erdolyi (based on notes left by H. Bateman) (ed.),Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York (1953).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. V. Pupyshev
    • 1
  1. 1.Joint Institute for Nuclear ResearchUSSR

Personalised recommendations