Skip to main content
Log in

On the stability of substituted 1,2-diazaallyl radicals

  • Published:
Reaction Kinetics and Catalysis Letters Aims and scope Submit manuscript

Abstract

The heats of formation of fully optimized methyl-ethyl-and 2-propyl-substituted 1,2-diazaallyl radicals and their parent compounds have been calculated at the level of semiempirical quantum-chemical methods (MNDO-HE, AM1-HE). The resonance energies and the stabilization energies were found to be 30–60 kJ mol−1 and around 60 kJ mol−1, respectively. From AM1-HE calculations, the group values ΔfH°[C−(NA)(H2)]=90.4 kj mol−1, ΔfH°[C−(NA)(C)(H)]=94.8 kj mol−1 were obtained.

Abstract

Теплоты образования разнообразных метил-, этил- и 2-пропилзамещенных 1,2-диазааллильных радикалов и родственных им соединений были рассчитаны на уровне полуэмпирических квантово-химических методов (MNDO-HE, AM1-HE). Энергия резонанса равна 30–60 кДж/моль, а энергия стабилизации около 60 кДж/моль. Исходя из расчетов AM1-HE групповые величины равны ΔfH°[C−(NA)(H2)]=90,4 κд͆/моль, ΔfH°[C−(NA)(C)(H)]=94,8 κд͆/моль.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. S. Engel: Chem. Rev.,80, 99 (1980).

    Google Scholar 

  2. M. Görgényi, L. Seres: J. Chem. Soc. Faraday Trans.,87, 1827 (1991).

    Google Scholar 

  3. Y. Paquin, W. Forst: Int. J. Chem. Kinet.,5, 691 (1973).

    Google Scholar 

  4. H. S. Sandhu: J. Phys. Chem.,72, 1857 (1968).

    Google Scholar 

  5. G. Martin, A. Maccol: J. Chem. Soc. Perkin Trans.,2, 1887 (1977).

    Google Scholar 

  6. A. Péter, G. Ács, P. Huhn: Int. J. Chem. Kinet.,16, 753 (1984).

    Google Scholar 

  7. M. J. S. Dewar, W. Thiel: J. Am. Chem. Soc.,99, 4899 (1977).

    Google Scholar 

  8. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart: J. Am. Chem. Soc.,107, 3902 (1985).

    Google Scholar 

  9. K. Cioslowski, M. Kertész: QCPE Bull.,7, 159 (1987).

    Google Scholar 

  10. M. Swarc, A. H. Sehon: Proc. R. Soc. London, Ser.A, 202, 263 (1950).

    Google Scholar 

  11. M. Swarc, A. H. Sehon: J. Chem. Phys.,18, 237 (1950).

    Google Scholar 

  12. A. S. Rodgers, M. C. Wu, L. Kuitu: J. Phys. Chem.,76, 918 (1972).

    Google Scholar 

  13. G. Leroy: Adv. Quant. Chem.,17, 1 (1985).

    Google Scholar 

  14. G. Leroy: Int. J. Quant. Chem.,23, 271 (1983).

    Google Scholar 

  15. R. L. Montgomery, F. D. Rossini: J. Phys. Chem.,82, 575 (1978).

    Google Scholar 

  16. F. D. Rossini, R. L. Montgomery: J. Chem. Thermodyn.,10, 465 (1978).

    Google Scholar 

  17. J. J. Kao, D. Leister: J. Am. Chem. Soc.,110, 7286 (1988).

    Google Scholar 

  18. T. Körvélyesi, L. Seres: React. Kinet. Catal. Lett.,40, 65 (1989).

    Google Scholar 

  19. B. Ondruschka, U. Ziegler, G. Zimmermann: Z. phys. Chem., Leipzig,267, 1127 (1986).

    Google Scholar 

  20. T. Körvélyesi, S. Lovas: in preparation

  21. M. L. McKee: J. Am. Chem. Soc.,112, 7957 (1990).

    Google Scholar 

  22. S. W. Benson: Thermodynamical Kinetics, 2nd Ed. Wiley, New York 1976.

    Google Scholar 

  23. J. Scherer, Jr., L. Batt, P. H. Stewart: 9th International Symposium on Gas Kinetics, Bordeaux, 1986.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Körtvélyesi, T., Görgényi, M. & Seres, L. On the stability of substituted 1,2-diazaallyl radicals. React Kinet Catal Lett 48, 65–72 (1992). https://doi.org/10.1007/BF02070068

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02070068

Keywords

Navigation