Quasi-optical ferrite devices for millimeter and submillimeter wave bands

  • Alexey A. Kostenko
  • Grigoriy I. Khlopov
Article

Abstract

Main features of the development of quasi-optical ferrite devices, using Faraday effect, are considered. Properties of a polarizing divider and a ferrite rotator of a polarization plane are analysed with standpoint of minimum losses. A matching method, based on an utilization of the rotator element in a form of the multilayers ferrite structure, which can be adjusted independently for right-handed and left-handed cyrcularly polarized waves, is suggested. It is shown, that this method allows to obtain a total matching in a quasi-optical transmission line. Results of an investigation of quasi-optical ferrite devices for the oversized round waveguide withH11 mode are presented.

Keywords

Ferrite Transmission Line Match Method Minimum Loss Polarization Plane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.J. Hindin, J.J. Taub. Faraday Rotation in Oversize Waveguide at Two and One Millimeter Wavelengths. Proc. IEEE, 1966, v.54, No7, p.p.988–989.Google Scholar
  2. 2.
    G.A. Kraftmacher, V.V. Meriakri. Nonreciprocal Ferrite Devices of a Submillimeter Wave Band. Radiotekhnika i Electronika, 1978, v.23, No4, p.p.875–877.Google Scholar
  3. 3.
    H.E. King, J.L. Wong. Characteristics of Oversize Circular Waveguides and Transition at 3 mm Wavelength. IEEE Trans., 1971, v.MTT-19, No1, p.p.116–117.Google Scholar
  4. 4.
    B.Z. Katzenellenbaum. Diffraction on a Plane Mirror in a Wide Waveguide Bend. Radiotekhnika i Electronika, 1963, v.8, No7, p.p.1111–1119.Google Scholar
  5. 5.
    R.B. Vaganov. Diffraction on a Symmetrical Waves on a Wide Slot of a Circular Waveguide. Izvestija Vuzov, Radofizika, 1969, v.12, No4, p.p.630–633.Google Scholar
  6. 6.
    V.P. Shestopalov, A.A. Kirilenko, A.A. Rud'. Resonance Wave Scattering. V.2, Waveguide Discontinuities. Kiev, Naukova Dumka, 1986.Google Scholar
  7. 7.
    E.L. Burstein. Power of Nonplane Wave Received by an Antenna. Radiotekhnika i Electronika, 1958, v.3, No2, p.p.186–191.Google Scholar
  8. 8.
    O.A. Tretiakov, V.P. Shestopalov. Diffraction on Electromagnetic Waves by Plane Metal Array Placed on Dielectric Layer. Izvestija Vuzov, Radiofizika, 1963, v.6, No2, p.p.352–362.Google Scholar
  9. 9.
    Proceedings of the Symposium on Quasi-Optics (New-York, June 8–10, 1964). Polytechnyc Press of the Polytechnyc Institute of Brooklyn, 1964.Google Scholar
  10. 10.
    A.A. Kostenko, O.A. Tretiakov. Propagation of Wave Beams in Longitudinally Magnetized Girotropic Media. Ukrainskij Fizicheskij Jurnal, 1979, v.24, No11, p.p.1626–1630.Google Scholar
  11. 11.
    A.A. Kostenko, G.I. Khlopov, Quasi-Optical Ferrite Devices. Izvestija Vuzov, Radiofizika, 1989, v.32, No4, p.p.502–509.Google Scholar
  12. 12.
    A.A. Kostenko. Matching of Ferrite Elements of Nonreciprocal Ouasi-Optical Devices. Radiotekhnika i Electronika, 1981, v.26, No10, p.p.2044–2052.Google Scholar
  13. 13.
    Digest of International Conference on Millimeter Wave and Far-Infrared Technology (Beijing, China, August 17–21, 1992). Publishing House of electronics Industry. 1992.Google Scholar
  14. 14.
    V.N. Polupanov, V.K. Kiseliov, E.M. Kuleshov. Quasi-Optical Unidirectional Ferrite Devices. International Journal of Infrared and Millimeter Waves, 1995, v.16, No3, p.p. 539–546.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Alexey A. Kostenko
    • 1
  • Grigoriy I. Khlopov
    • 1
  1. 1.Institute of Radiophysics and Electronics of National Academy of Sciences of UkraineKharkovUkraine

Personalised recommendations