Advertisement

Reaction Kinetics and Catalysis Letters

, Volume 17, Issue 1–2, pp 35–39 | Cite as

On a theorem of overshoot-undershoot kinetics

  • Gy. Póta
Article

Abstract

A lemma has been provided to completely prove and to extend the following theorem. In a closed system of first-order, reversible reactions involving n components the concentration vs. time curve of any component can exhibit at most n-2 relative strict extrema.

Keywords

Physical Chemistry Catalysis Closed System Time Curve Reversible Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abstract

Предлагается лемма для полного доказательства и далнейшеро расширения следующей теоремы: в закрытой системе обратимых реакций первого порядка, включающих число компонентов n, кривые концентрация имеют максимально n-2 относительных строгих экстремумов.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. G. Denbigh, M. Hicks, F. M. Page: Trans. Faraday Soc.,44, 479 (1948).Google Scholar
  2. 2.
    W. Jost: Z. Naturforsch.,2a, 159 (1947).Google Scholar
  3. 3.
    J. Wei and C. D. Prater: The Structure and Analysis of Complex Reaction Systems. Advances in Catalysis, Vol. 13, pp. 203–392, Academic Press, New York and London 1962.Google Scholar
  4. 4.
    J. Higgins: Ind. Eng. Chem.,59, 18 (1967).Google Scholar
  5. 5.
    A. Schubert: Kinetics of Homogeneous Reactions (in Hungarian) p. 122.Műszaki Könyvkiadó, Budapest 1976.Google Scholar
  6. 6.
    L. S. Pontryagin, V. G. Boltyanski, R. V. Gamkrelidze, E. F. Mishchenko: The Mathematical Theory of Optimal processes, p. 122. Interscience Publishers, New York-London 1963.Google Scholar
  7. 7.
    G. Pólya, G. Szegő: Problems and Theorems in Analysis, Vol. II, p. 46. Springer-Verlag, Berlin Heidelberg New York 1976.Google Scholar
  8. 8.
    A. I. Volpert, S. I. Khundaev: Analiz v klassakh razryvnykh funktsii i uravneniya matematicheskoi fiziki. Ch. XII, p. 354. Nauka, Moskva 1975.Google Scholar
  9. 9.
    L. S. Pontryagin: Ordinary Differential Equations (in Hungarian), pp. 93–102. Akadémiai Kiadó, Budapest 1972.Google Scholar
  10. 10.
    Gy. Rábai, Gy. Bazsa, M. T. Beck: J. Amer. Chem. Soc.,101, 6746 (1979).Google Scholar

Copyright information

© Akadémiai Kiadó 1981

Authors and Affiliations

  • Gy. Póta
    • 1
  1. 1.Department of Physical ChemistryL. Kossuth UniversityDebrecenHungary

Personalised recommendations